{{menu_nowledge_desc}}.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Application of mid-infrared spectroscopy for rapid characterization of key soil properties for engineering land use

Export citation

Methods for rapid and accurate soil tests are needed for the index properties of material attributes commonly applied in civil engineering. We tested the application of mid-infrared (MIR) spectroscopy for the rapid characterization of selected key stability-related soil properties. Two sample sets, representing different soils from across Lake Victoria basin in Kenya, were used for the study: A model calibration set (n=135) was obtained following a conditioned Latin hypercube sampling, and a validation set (n=120) was obtained from independent sites using a spatially stratified random sampling strategy. Air-dried ground (55%, 4.2; PI>30%, 2.7; LS>12%, 2.4; exchangeable sodium (eNa)>2 cmol (+) kg1, 2.3; exchangeable sodium percent (ESP)>10%, 1.8; W>8.3%, 1.6, and Activity number (A)>1.25 units, 1.5. MIR can provide the rapid assessment of several soil properties that yield stability indices in material testing for engineering land use. Further studies should test the ability of MIR PLS for establishing broader calibrations across more diverse soil types and the direct correlation of MIR to material functional attributes

DOI:
https://doi.org/10.1016/j.sandf.2015.09.018
Altmetric score:
Dimensions Citation Count:

Related publications