{{menu_nowledge_desc}}.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach

Export citation

Historically, the expansion of soy plantations has been a major driver of land-use/cover change (LUCC) in Brazil. While a series of recent public actions and supply-chain commitments reportedly curbed the replacement of forests by soy, the expansion of the agricultural commodity still poses a considerable threat to the Amazonian and Cerrado biomes. Identification of areas under high risk of soy expansion is thus paramount to assist conservation efforts in the region. We mapped the areas suitable for undergoing transition to soy plantations in the Legal Amazon with a machine-learning approach adopted from the ecological modeling literature. Simulated soy expansion for the year 2014 exhibited favorable validation scores compared to other LUCC models. We then used our model to simulate how potential future infrastructure improvements would affect the 2014 probabilities of soy occurrence in the region. In addition to the 2.3 Mha of planted soy in the Legal Amazon in 2014, our model identified another 14.7 Mha with high probability of soy conversion in the region given the infrastructure conditions at that time. Out of those, pastures and forests represented 9.8 and 0.4 Mha, respectively. Under the new infrastructure scenarios simulated, the Legal Amazonian area under high risk of soy conversion increased by up to 2.1 Mha (14.6%). These changes led to up to 11.4 and 51.4% increases in the high-risk of conversion areas of pastures and forests, respectively. If conversion occurs in the identified high-risk areas, at least 4.8 Pg of CO2 could be released into the atmosphere, a value that represents 10 times the total CO2 emissions of Brazil in 2014. Our results highlight the importance of targeting conservation policies and enforcement actions, including the Soy Moratorium, to mitigate future forest cover loss associated with infrastructure improvements in the region.
Download:

DOI:
https://doi.org/10.3390/f9100600
Altmetric score:
Dimensions Citation Count:

Related publications