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Introduction

Despite playing an essential role in safeguarding food security, livelihoods, 
and human well-being, biodiversity is in precipitous decline globally 
with devastating social, environmental, and economic impacts (Pörtner 
et al. 2023). Thus, incorporating biodiversity into integrated landscape 
management strategies is crucial for reconciling conservation and 
livelihoods in multifunctional landscapes. However, doing so can be 
challenging in context of limited resources, competing land demand, land 
tenure issues, lack of institutional capacity, socioeconomic factors, and 
livelihood dependency on natural resources. Moreover, climate change 
impacts, lack of awareness about the value of biodiversity, insufficient 
stakeholder engagement, and inadequate community involvement in 
decision-making processes can impede the incorporation of biodiversity 
considerations into landscape management strategies. Significant concerns 
exist that the international conservation targets set for 2030 will not be met 
(Palomo et al. 2024). 

To address these, Integrated Landscape Approaches (ILAs) have gained 
increasing support in the conservation and development discourse (Defries 
and Rosenzweig 2010; Sayer et al. 2013; Reed et al. 2016), emphasizing 
ecological approaches to quantify spatial variation in biodiversity and 
ecosystem services (Reed et al. 2021). This involves collecting or compiling 
data on landscape structure, species presence and abundance, the 
ecological services they deliver, and their uses and relational values 
perceived by local people (Pascual et al. 2021). Acquiring such data 
requires a combination of remote sensing techniques to assess ecological 
conditions across a region and to capture the full range of dominant 
vegetation types and land uses, with adequate taxa sampling on the ground 
and qualitative methods to capture the wellbeing needs and aspirations of 
local people.

Photo by Yves Laumonier/CIFOR-ICRAF
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Analysing the composition and configuration of the matrix land cover is 
indeed critical for designing biodiversity-friendly landscapes, as it is a 
key determinant of forest species’ ability to survive (Galán-Acedo et al. 
2019; Hendershot et al. 2020). Riparian vegetation strips and mosaics 
of successional stage patches of fallow forests function as ecological 
corridors, improving environmental connectivity. Addressing biodiversity 
at the broader landscape scale can also help to overcome debates 
related to optimal scale and configuration of land units: for example, a 
single large forest patch versus several small forest patches (Simberloff 
and Abele 1982; Fahrig 2020); and management options for land sharing 
(combining land uses in a multifunctional system) versus land sparing 
(segregation of land uses) (Green et al. 2005; Perfecto and Vandermeer 
2010; Phalan et al. 2011).

Several handbooks extensively discuss biodiversity survey and 
monitoring methods (Hill et al. 2005; Sutherland 2006; Gardner 2010; 
Larsen, ed. 2016; Walters and Scholes, eds. 2017). The guidelines 
presented here serve as a framework and baseline for monitoring 
biodiversity in ILA projects, designed to facilitate interactions among 
social and biophysical scientists, Indigenous People and Local 
Communities (IPLCs), policymakers, decision makers, and practitioners. 

The guidelines were designed with a multifaceted approach to serve a 
diverse audience. While part of the handbook provides detailed academic 
insights tailored for scientists and researchers, the other is made 
accessible and practical for local practitioners, NGOs, and community 
members involved in on-the-ground conservation efforts. This strategy 
ensures that the guidelines are both scientifically rigorous and valuable 
for those actively engaged in biodiversity conservation and management 
at the local level, helping overcome recurrent scale and integration issues 
in contemporary landscape management  
(Fritsch et al. 2020; Gonzalez et al. 2020).

The guidelines combine conventional scientific studies at multiple 
scales with the participation of local communities and emphasize 
local perceptions, knowledge, and experiences in natural resource 
management. They are divided into two main sections: the conventional 
biophysical subregional scale approach (district, large watershed) and a 
more participatory-minded section devoted to a participatory and citizen 
science approach at the local scale.

Photo by Nanang Sujana/CIFOR-ICRAF
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1	 Biodiversity Monitoring at  
the Sub-Regional Scale 

Box 1. Main websites for satellite data access

Landsat

Landsat data can be accessed through the US 
Geological Survey (USGS) website
USGS EarthExplorer https://earthexplorer.usgs.gov/
USGS GloVis https://glovis.usgs.gov/app

Sentinel satellite

Sentinel satellite data is available through the 
Copernicus Open Access Hub
https://dataspace.copernicus.eu/explore-data/data-
collections

Planet

Planet Labs provides satellite imagery, but access is 
typically restricted to paid subscribers or through specific 
programs for r esearchers. However, a NICFI program 
allows users from tropical areas to get specific base map 
data for free.
https://www.planet.com/get-started/

One can access all the above directly via Google Earth Engine  
(see main text).
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/sentinel
https://developers.google.com/earth-engine/datasets/catalog/projects_
planet-nicfi_assets_basemaps_asia

Source: Authors 2025

1.1		 Historical remote sensing study on LULCC 
in the landscape

The purpose is to first monitor rather large areas, analyse large 
landscapes, and zoom in on specific areas using higher-resolution 
satellite data if available. Drone remote sensing can complement 
this for various purposes; for example, by calibrating satellite remote 
sensing data and encouraging local engagement and participation 
(see section 2).

The Landsat program provides free online satellite data ideal for 
historical forest cover mapping at scales from (1:50,000) 1:100,000 to 
1:250,000. Its extensive archive of images (1970s–present) is easily 
accessible via Earth Explorer or Google Earth Engine (GEE) platforms. At 
the same time, one can evaluate the use of SPOT, Sentinel 1 & 2 (free); 
if available for the selected sites, it could be helpful to work with greater 
resolution (10 x 10 m for Sentinel, and C radar band or fusion optical-
radar (Figure 1), or approximate 5 x 5 m using PLANET Satellite). See 
Box 1 for information on how to access satellite data.

For larger scale (district / big watershed) visual delineation of land units, 
we recommend Landsat band RGB composites (recommended bands 
5,4,3 for Landsat 8). Although it is often disregarded, this is a very viable 
approach for forest-vegetation mapping assessment, particularly if 
image analysis tools and experience are limited.

https://earthexplorer.usgs.gov/
https://glovis.usgs.gov/app
https://dataspace.copernicus.eu/explore-data/data-collections
https://dataspace.copernicus.eu/explore-data/data-collections
https://www.planet.com/get-started/
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/sentinel
https://developers.google.com/earth-engine/datasets/catalog/projects_planet-nicfi_assets_basemaps_asia
https://developers.google.com/earth-engine/datasets/catalog/projects_planet-nicfi_assets_basemaps_asia
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The visual delineation of land units on printouts is not recommended: on-screen 
delineation with direct labelling on the screen should be preferred to produce 
direct digital results. When performed by interpreters who know the area, this 
technique invariably surpasses or enhances any digital classification (see Box 2 
for practicalities).

If visual interpretation is not an option, a machine learning approach is 
recommended to analyse larger landscapes, time series and change 
detection analysis, such as using the Google Earth Engine (GEE). This is 
a web-based platform hosting an extensive catalogue of analysis-ready 
satellite imagery stored in a public data archive. It includes historical images 
dating back more than 40 years, with imageries from MODIS, Landsat 
Science, Sentinel, Planet, etc. The data catalogue is paired with scalable 
computer power backed by Google data centres, enabling use of the data, 
even without downloading them; and performing some spatial analysis 
(including image corrections) on this platform. It is possible to produce a 
free-cloud mosaic generated in GEE (composite using two to three years 
of aggregation). GEE also provides many algorithms, either unsupervised 
(K-Means, X-Means, Cascade K-Means) or supervised (Random Forests, 
Support Vector Machine, Gradient Tree Boost, and Decision Tree). Tools 
from the OpenForis platform, such as the System for Earth Observation 
Data Access, Processing and Analysis for Land Monitoring (SEPAL) (FAO 
2021) and Collect Earth (Saah et al. 2019), are also worth considering – 
particularly for practitioners unfamiliar with remote sensing, since data are 
pre-analysed.

For forests and woodlands degradation monitoring, mapping of cumulative 
disturbed forest areas is suggested, based on time-series of surface 
reflectance with temporal characteristics from shortwave infrared bands 
and four vegetation indices (Wang et al. 2019). This should be done using 
Breaks For Additive Season and Trend (BFAST) (Verbesselt et al. 2012; 
Muñoz et al. 2020; Hamunyela et al. 2020) or Landsat-based Detection of 
Trends in Disturbance and Recovery (LandTrendR) (Kennedy et al. 2018). 

A vegetation/land cover classification is developed that includes the main 
vegetation classes (e.g. forest, forest fragments, secondary regrowth, 
woodlands, savannahs, grasslands, agriculture fields, etc.) The minimum 

Figure 1. Example of wetland vegetation classification in Borneo 
The satellite-derived map corresponds closely with field observations, an outcome that is 
not always easy to achieve. The map is based on high-resolution (10 × 10 m) optical–radar 
fusion data. Shrub vegetation (green) is clearly identified around the lake, while freshwater 
swamp forest is detected along the river. Further from the banks, mixed peat swamp forest 
is distinguished, although peat swamp and low-pole peat forest are grouped. The landscape 
is dominated by mixed peat swamp forest, and for each forest type, a distinction is made 
between logged and intact stands.

https://earthengine.google.com./
https://modis.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://sentinels.copernicus.eu/
https://www.planet.com/
https://bfast.r-forge.r-project.org/
https://research.fs.usda.gov/treesearch/54160
https://research.fs.usda.gov/treesearch/54160
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area for these vegetation units is 1 ha (since one uses mainly Landsat at first 
approximation, 9 pixels will correspond to the smallest mappable unit, which 
aligns with the ground vegetation plot survey). This also aligns with the most-
used standard tool for quantifying forest characteristics on the ground, the 
1-ha forest inventory plot (Alder and Synnot 1992; Mitchard 2016).

The resulting classification should be as detailed as possible. It is crucial to 
point out detailed forest types, landscape fragmentation levels, ecosystems, 
and agricultural uses linked to landscape management options beyond the 
classic forest/non-forest matrix. While government classifications of land use 
and land cover (LULC) are often promoted to facilitate mutual understanding 
among stakeholders, we argue that relying solely on such standardized 
systems can obscure ecologically important distinctions. Researchers should 
instead advocate for finer scale data collection and knowledge development 
to support more rigorous and context-sensitive landscape management. Land 
use planning will be enhanced by applying management on a per-forest-
type basis, rather than simply by forest or non-forest, and detailed vegetation 
assessment will ensure more robust biodiversity sampling strategies.

Since the Convention on Biological Diversity (CBD) Sourcebook on Remote 
Sensing and Biodiversity Indicators Explorations (Strand et al. 2007), research 
on the connections between remote sensing and biodiversity has drastically 
increased (Geller et al. 2017), as recently reviewed (Cavender-Bares et al. 
2022; Reddy 2021).

Remote sensing primarily captures structural attributes such as canopy 
height, density, and spectral variability; thus, it excels in estimating 
vegetation biomass (see Labrière et al. 2022 for a forest biomass reference 
measurement system). Although many experts and scholars argue that high 
carbon stocks in plant biomass correlate with high biodiversity, particularly 
in intact, old-growth tropical rainforests, not everyone agrees (Sabatini et 
al. 2018). Certain ecosystems, including savannas, shrublands, and early 
successional habitats, may exhibit relatively low carbon stocks while still 
supporting high levels of biodiversity. Furthermore, the relationship between 
carbon storage and biodiversity can vary depending on spatial scale (Sullivan 
et al. 2017). While a positive correlation may be evident at the regional or 
landscape scale, this relationship could be weak or nonexistent at the local or 
stand-scale level.

Box 2. On-screen visual interpretation of satellite data.

On-screen interpretation of color composite images:
•	 4,5,3 band combination (red, near-infrared and 

green); variations in moisture content are better 
identified with this set of bands), and

•	 7,4,2 band combination (short wave infrared, red 
and blue) to accurately interpret areas with humid 
vegetation (swamp). 

A mixed computerised and manual classification 
approach can be made to differentiate between (see 
King 2002):
•	 “Localized, spectrally mixed, usually small, with 

few occurrences (LSM: localized spectrally mixed), 
not interpretable using supervised classification 
(example mosaic of swidden agriculture landscape 
or swamp vegetation mosaic), and 

•	 Widespread, spectrally consistent, usually large 
and with many occurrences” (RSC: repetitive 
spectrally consistent) suitable for supervised 
classification (for example, irrigated rice fields).

Such a wall-to-wall on-screen visual interpretation of the vegetation is 
then overlayed with ancillary data (bioclimates, geomorphology, soils, 
elevation) to produce large-scale ecological vegetation maps showing 
details of forest types and conditions and the composition of the 
landscape matrix.

Photo by Uji Pribadi/ CIFOR-ICRAF
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Therefore, relying solely on remote sensing to identify biodiversity values 
is limited and should be supplemented with on-the-ground assessments 
and ecological surveys for a more comprehensive understanding. However, 
promising new methods using spectral diversity has emerged as a new 
proxy for terrestrial plant diversity (Wang and Gamon 2019).

1.2	 Landscape fragmentation and connectivity 

Fragmentation analysis of the landscape structure over time is crucial for 
informing management, with the composition and configuration of the 
landscape linked to functional biodiversity and ecosystem services. How 
the spatial arrangement and composition of agricultural fields and other 
landscape habitats impact wildlife (vegetation, birds, arthropods) and their 
functions (pest control, pollination and yields, pollinator and natural enemies) 
is still poorly known. Addressing various scale levels remains crucial in any 
connectivity and fragmentation assessment.

Several specialised software programs are available to calculate landscape 
metrics. The most widely used is Fragstats (McGarigal and Marks 1995; 
McGarigal et al. 2023). Fragstats is a spatial pattern analysis program 
for quantifying landscape structure. It offers a comprehensive choice 
of landscape metrics and computes several statistics at three levels of 
analysis: patch, class, and landscape. Many of the metrics are highly 
correlated (Wang et al. 2014). The most used metrics in land cover 
fragmentation change analysis are given in Box 3 at landscape and patch 
levels. An R package called ‘landscapemetrics’ is also available and allows 
the calculation of landscape metrics for categorical landscape patterns 
(Hesselbarth et al. 2019).

Figure 2. Importance of detailed vegetation mapping for understanding 
fragmentation impacts on wildlife.
A simple forest/non-forest classification (left) obscures key ecological features, whereas the 
inclusion of secondary forest (old fallows) (orange colour right) reveals potential corridors that 
many animal species can use to move between more intact forest patches. Such fine-scale 
mapping is essential to assess connectivity, species movements and guide conservation 
planning.

Forest

Swamp forest

Old secondary forest

Water

Non-forest

Fallow and garden

https://www.fragstats.org/
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Table 1. Suggested metrics for Landscape and Patch level analysis.

Landscape level

Number of Patches (NP) Total number of patches in the landscape.

Patch Density (PD) [number per 100 
hectares]

Patch density has the same basic utility as number of patches as an index, except that it expresses number of patches on a 
per unit area basis that facilitates comparisons among landscapes of varying size.

Landscape Shape Index (LSI) The ratio between the actual landscape edge length and the hypothetical minimum edge length; standardised measure of 
total edge or edge density that adjusts for the size of the landscape.

Largest Patch Index (LPI) The percentage of total landscape area comprised by the largest patch. As such, it is a simple measure of dominance.

Total Core Area (TCA)[ha] Total core area (TCA) represents the total cover of all patches of the corresponding patch type.

Euclidean Nearest-Neighbor Distance 
(ENN_MN)[m]

Euclidean nearest-neighbour, the simple measure of patch context, used to quantify patch isolation, distance between the 
focal patch and its nearest neighbour of the same class.

Patch level

Number of Patch (NP) Simple measure of the amount of class.

Edge Density (ED) Represents the edge length per unit area.

Perimeter-Area Fractal Dimension 
(PAFRAC) The perimeter area fractal dimension (PAFRAC) represents the shape complexity.

Total Core Area (TCA) Total Core Area (TCA) represents the total of all patches of the corresponding patch type.

Edge Contrast Index (ECON_AM) Contrast metrics represent the difference between neighboring patch types.

Clumpiness Index (CLUMPY) The clumpiness index (CLUMPY) shows the frequency with which similar patch types appear side-by-side.

Euclidean Nearest-Neighbor Distance 
(ENN_MN)

Euclidean nearest-neighbour distance is a simple measure of patch context: isolation, distance between the focal patch and 
its nearest neighbour of the same class.

Patch Cohesion Index (COHESION)
Patch cohesion index measures the physical connectedness of the corresponding patch type. Below the percolation 
threshold, patch cohesion is sensitive to the aggregation of the focal class. Patch cohesion increases as the patch type 
becomes more aggregated.

Source: McGarigal and Marks 1995
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1.3	 Ground survey, sampling protocol for 
vegetation (trees and other plant group), birds, 
arthropods, small mammals, amphibians and 
fish

Vegetation (trees and other plants), birds, and selected groups of arthropods 
and fish are widely recognized as effective indicators for landscape-level 
biodiversity monitoring, while amphibians and small mammals are also used 
to a lesser extent. Among these, plants, birds, butterflies, and ground beetles 
are the most commonly applied indicator groups due to their data availability, 
relative ease of collection and identification, and their well-known sensitivity 
to environmental change and ecological functions such as pollination, seed 
dispersal, or pest regulation (Bibby 1999; Brown and Freitas 2000; Koivula 
2011; Lawton et al. 1998; Peh et al. 2006; Rainio and Niemelä 2003). Birds are 
often used as surrogates for overall biodiversity (Kati et al. 2004; Schulze et 
al. 2004; Larsen et al. 2012).

Strong, interdependent relationships exist between trees, birds, and 
insects (nesting sites, food chain, pollination, seed dispersal, biological 
control) that maintain and promote resilience to environmental changes. 
Understanding, conserving, and monitoring these relationships is crucial for 
ecosystem health, biodiversity conservation, and sustainable management 
of natural resources. Depending on objectives, working on a combination 
of trees, birds, and arthropod groups is a recommended priority. When 
aquatic ecosystems need to be monitored, fish are the usual targets, but 
some aquatic arthropods could be excellent indicators of the health of the 
environment and could be considered.

Vegetation sampling  
and tree plots

The large-scale ecological vegetation maps and corresponding 
classifications performed previously are used to pre-stratify and design 
an equally stratified sampling protocol covering the main vegetation types 
(see Box 3). This sampling strategy is known for being robust and has many 
advantages over pure random or proportionally stratified sampling (Hirzel 
and Guisan, 2002; Rolecek et al. 2007). 

Since the 1980s, large plot (25 to 50 ha) networks have been established 
worldwide to monitor forest function and dynamics (Hubbell and Foster 
1983; Manokaran et al. 1990). These networks necessitate large investments 
but bring tremendous new knowledge (see ForestGEO network). A 
minimum of 4 ha was recommended for forest types in the humid tropics 
(Laumonier et al. 2010).

Nowadays, worldwide recommendation is for One-hectare samples (100 m x 
100 m) for humid and seasonal tropical and subtropical forests/ woodlands. 
Since the ultimate goal is to contribute to future monitoring, permanent plots 
are also strongly recommended (Baraloto et al. 2012; Condit et al. 2014; 
Phillips 2023). The plot establishment procedure and tree measurements 
follow classic guidelines (Alder and Synnott 1992; Dallmeier 1992). They 
have been recently standardised for the humid (RAINFOR Phillips et al. 
2018) and the seasonal tropics (DRYFOR Moonlight et al. 2020; SEOSAW 
partnership 2021).

Positions of all trees of diameter 10 cm and above (rainforest), or 5 cm  
and above (woodland, fallow forest) are mapped (10 x 10 m grid 
recommended) and measured for their total height, the height of the first 
branch (free bole), and diameter at 1.3 m above the ground (see Appendix 1). 
Measuring diameter at 0.3 (stem base) and 1.3 m (each branching stem) is 
recommended in woodlands where many species are multistemmed. 
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Box 3. Sampling design 

An equal-stratified sampling pattern is 
recommended: It implies allocating an equal 
number of sampling units to each previously 
identified ecologically meaningful strata. As 
demonstrated by Hirzel and Guisan (2002), 
equal-stratified sampling consistently 
outperforms random and proportional-stratified 
methods in habitat suitability modelling, yielding 
higher prediction accuracy and lower variability 
in model outcomes. By evenly representing 
environmental gradients, this strategy minimizes 
sampling bias and improves the detection of 
species–environment relationships, especially 
when sample sizes are limited.

Legend

(A) Regular grid sampling  
(B) Random sampling  
(C) Equal-stratified sampling  
(D) Proportional- stratified strategy

A B

C D

Photo by Axel Fassio/CIFOR-ICRAF
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While time-consuming, the tree crown projection is also an excellent 
ecological parameter to record as another way of looking at dominance 
beyond classical diameter at breast height (DBH) measurements and can 
complement measurements of light availability under the canopy (Gourlet-
Fleury et al. 2001) (see Appendix 2).

The conservation value of riparian (riverine) forests has also long been 
recognised (de Lima and Gascon 1999). Riparian forest buffers play a vital 
role in conserving some forest-dependent species and serve as ecological 
corridors that enhance connectivity within forest patches while offering 
additional resources like food, water, and shelter. For sampling of riparian 
forests, belt transects 20 m wide and 250 m long are set up on each 
riverside to cover 1 ha (see Appendix 1).

Besides natural forests, successional stages of forest regeneration following 
abandoned agricultural plots are well recognized for their importance in 
the landscape in terms of biomass (some old fallow forests are structurally 
very similar to natural forests), species diversity (Poorter et al. 2016; Arroyo-
Rodríguez et al. 2015; Rozendaal et al. 2019), and improving the quality of 
the landscape matrix to maintain forest species (Chazdon et al. 2016). 

For semi-natural vegetation like parklands/agroforestry or young 
successional stages (shrubs, young fallows), 10 to 20 smaller plots (20x20 
or 40x40 m) are sufficient. 

When working on large areas and depending on objectives, it could be 
more efficient to establish, for each vegetation type, a network of small 
rectangular 20 x 100 m (instead of 1 ha blocks) parallel to contour lines and 
along gradients on slopes to assess variations such as land facets (e.g. 
riverine, lower slope, mid-slope, upper slope, ridge).

Full practical details are given in Appendix 1 and 2.

Photo by Yves Laumonier/CIFOR-ICRAF



Guidelines for Monitoring Biodiversity in Social-Ecological Landscapes 11

Other plant groups  
and life forms

 

Besides trees, other less often considered plant groups can be excellent 
indicators of the quality of the environment. Climbers (lianas), shrubs, and 
herbs are often important for communities that may use them for food 
or medicine. Sampling of lianas should differentiate between woody and 
non-woody (e.g., rattans and other climbing palms) climbers, measuring 

Box 4. Examples of transect layout designs in grasslands

a) Spoke Design
25 m spoke design covers ~0.3-hectare (~0.7 acres). 50 m (~75 ft) spoke design covers a 1 hectare 
(~2.35 acres) area. Trancsects begin 5 m (15 ft) from the plot’s center to focus trampling around center 
stake and minimize disturbance effects on transects.

b) Intersecting Design
The intersecting transect design covers ~0.2 hectares (~0.4 acres). Two 50 m (150 ft) transects intersect 
at the 25 m (75 ft) mark at plot center. The transect arms are oriented 45 degrees in both directions from 
magnetic north.

c) Parallel Transect Design Standard transect length is 25 m (75 ft). Parallel transects are evently spaced. Transcects may run 
perpendicular to the slope or perpendicular to a randomly selected azimuth.

d) Single Transect Design Standard transect length is 25 m (75 ft); a multiple single transect design is often used to maximize 
replication at landscape scale.

e) Linear Feature Design 
(e.g., riparian)

Standard transect length is 25 m (75 ft); a multiple single transect design is often used to maximize 
replication at landscape scale. Length may vary depending on linear feature size, extent, or potential 
impact.

Source: Herrick et al. 2016

diameters (greater than or equal to 2 cm) at a fixed distance along the stem 
from the rooting point. Gerwing et al. (2006) proposed a sampling protocol 
for lianas.

Grasslands are a crucial landscape element in dry woodland and savanna 
ecosystems, maintaining biodiversity, storing below-ground carbon, and 
providing ecosystem services. Andrade et al. (2019) discussed grassland 
sampling and data analysis. Species composition assessment using 1 m2 
quadrats under stratified random sampling is the most used protocol in such 
ecosystems, but various transect methods have also been recommended 
when designing monitoring protocols (see Box 5). 
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Birds

Classic bird surveys using the point count method (Ralph 1993; Ralph et al. 1995) should 
be conducted, preferably during both the rainy and dry seasons. It is recommended that 
10-minute point count recordings are conducted between 6–9 am and 3–6 pm, every 
100 m along 1,000 m transects and within 200 m of each vegetation edge to control edge 
effects (Restrepo and Gómez 1998; Figure 3), starting at the vegetation plots established 
previously (if any). Distance between transects should also be at least 200 m. Distance 
between recording points can be extended to 150 m in open savannah vegetation to avoid 
pseudo-replication risk. 

All seen and heard bird species within two fixed radii (30 m and 50 m) are recorded visually 
and by standardised tape recordings. It is always better (for abundance calculation) to record 
the distance from the observer listed in two categories: from 0 to 30 m and 30 m to 
50 m. Sample replication (remeasurement for each single transect) should occur for 
at least four days. Mist net use can enhance taxonomic records. Birds 
flying over the site, migratory birds, birds of prey and swifts should be 
disregarded. 

Figure 3. One kilometer bird survey transect 
example and one sampling point enlarged 
Each bird point count is conducted by two people 
(sometimes three, with an additional spotter): one 
observer dedicated to detecting and identifying birds, 
and one assistant responsible for recording observations 
and keeping track of time. This division of tasks allows the 
observer to remain fully focused on bird detection, while 
the assistant ensures accurate timing and data entry. Using 
two people reduces errors and increases the reliability of 
the survey compared to having a single observer do both 
tasks (Bibby et al., 2000).
Source: Authors 2025 
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Small mammals  
and bats

Small mammals are usually divided into small terrestrial and volant mammals 
(bats) and correspond to species weighing less than 500 g, the upper 
size limit that can easily be caught in commercially produced live traps 
(Hoffmann et al. 2010).

Terrestrial small mammals, shrews, moles, most rats, mice and many squirrels’ 
assemblages can be easily sampled with traps or pitfalls, and population 
estimated using capture-mark-recapture protocols (Krebs 1989). Most small 
mammals are easily handled and require relatively little specialized equipment. 
The foldable and portable Sherman live trap has become the standard, but less 
expensive and often locally-made wire or cage traps can be sufficient.

Bats are elusive creatures, active at night, making them hard to study. As a 
result, monitoring their diversity can be quite challenging. Common methods 
for capturing bats include ground-based and canopy mist nets (vertical 
stratification of bat assemblage is an important aspect when assessing local 
bat species diversity), or harp traps (Kunz et al. 2009). Harp traps consist of 
two to four parallel rectangular metal frames (usually 2x3 m) at 4 cm to 6 cm 
distances. Each carries a layer of vertically oriented monofilament fishing lines 
at 2 cm to 3 cm distances (Figure 4). Acoustic sampling of bats is also possible.

As a general rule, all people handling wild animals must consider the possibility 
of exposure to zoonotic diseases, and therefore wear protection like gloves and 
masks and regularly disinfect equipment (Kunz et al. 1996; Chomel et al. 2007). 
People capturing bats should be informed about potential health risks and 
vaccinated against rabies at least (Aguilar-Setién et al. 2022).

Bats are extracted promptly after capture—ideally within 20 minutes—or whenever the 
trap is accessible, to minimize stress and reduce potential harm. This quick turnover 
has been shown to preserve bat welfare (BaTML, 2005; U.S. National Park Service 
SOP, 2023).

Figure 4. Sketch of harp trap setup for bats

https://shermantraps.com/
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Amphibians

Amphibians have proven to help monitor forest restoration programs. Survey techniques 
are relatively easy to implement (see Crump et al. 1994). Litter frogs, for instance, can be 
surveyed in evenly spaced 5x5 m plots along transects (Gascon, 1996). Plastic mesh fences 
of 50 cm in height are initially placed around the selected plot, and two people carefully 
search the area within the fence for litter frogs. All frogs are identified and released  
(Lips et al. 2001).

Arthropods

Arthropods play a crucial role in forested landscapes due to their diverse ecological functions 
and significant contributions to ecosystem health (pollination, seed dispersion, natural 
enemies, litter decomposition, and food source). Certain arthropods, like ants, dung beetles 
and butterflies, are sensitive to environmental changes and often used as forest health 
indicators (Audino et al. 2014; Barragán et al. 2011; An and Choi 2021). Monitoring arthropod 
populations can provide valuable insights into ecosystem dynamics, habitat quality, and the 
impacts of disturbances like deforestation or climate change.

Ground and flying arthropods, pollinators and natural enemies can be surveyed relatively 
easily using the ‘three-colour pan-pitfall trap’ protocol, supplemented by Malaise traps at 
various heights in the canopy. Specimen identification is Malaise and three-colour pitfall traps 
installation in the forest.

An interesting approach is using aquatic arthropods for water quality monitoring in small 
streams (Ephemeroptera, Plecoptera and Tricoptera, or EPT index), and has been applied in 
some tropical landscapes (Suhaila et al. 2012; Bonzemo 2018). It is also a valuable citizen data 
collection exercise and can be organised with school children. 

Illustration by Aurélie Vidal
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Fish (freshwater)

In a recent review, Radinger et al. (2019) highlight the 
importance of identifying the key aims in monitoring 
programmes and outline the different methods of sampling 
freshwater fish used to achieve these aims. Guidelines on 
sampling methods for fish population assessment, species 
identification, size measurements, and monitoring, including 
netting (seine, gill, fyke nets), trapping or electrofishing, have 
long been perfected (Bonar et al., 2009; Zale et al. 2012).  
They vary according to habitats, whether working in 
headwaters, rivers or lakes. Non-capture methods also exist 
that use acoustic tags and receivers to track fish movements, 
migration patterns, and habitat use over time (Lees et al. 
2021), while new environmental DNA (eDNA) techniques 
involve collecting water samples to detect traces of fish DNA, 
providing a non-invasive method to assess biodiversity and 
monitor rare or elusive species (Evans and Lamberti 2017). 
Standard protocol (Bonar et al. 2017) is highly encouraged, 
while fish monitoring involving capture-recapture procedures 
is also recommended. Fish are typically tagged before being 
released, significantly enhancing the quality of information 
gathered (Pollock 1991). The well-recognized programme 
MARK allows for analysis of such data.

Photo by Freepik.com

http://www.phidot.org/software/mark/background/index.html
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1.4	 Digital technologies in wildlife monitoring

Beyond digital tools like geographic information systems (GIS) and 
satellite remote sensing, digital technology has revolutionised wildlife 
and conservation research in the past decade. The development of GPS 
trackers, camera trapping, acoustic recorders and unmanned aerial vehicles 
(drones) has allowed researchers to remotely monitor wildlife movements, 
behaviours, and populations. Digital technology enables real-time 
monitoring of environmental parameters, such as temperature, humidity, and 
sound levels, that can impact wildlife habitats. It has been accompanied by 
the tremendous development of digital platforms and software that enable 
the processing and analysis of large datasets and mobile applications that 
facilitate citizen science and crowd-sourcing initiatives.

Marvin et al. (2016) and Piel et al. (2021) reviewed the role of several 
methods – camera traps, acoustic monitoring, drones, and portable field 
labs – and improvements in machine learning that offer rapid, reliable means 
of combing through large datasets that these methods generate.

Camera trapping

The use of camera trapping (CT) to survey and monitor wildlife has 
increased dramatically since the beginning of this century  
(Burton et al. 2015). It encompasses many models and ecological 
applications, mostly assessing wildlife distribution, abundance, behaviour, 
and community structure (Wearn and Glover-Kapfer 2017). 

The standard spatial configuration recommends deploying cameras in a  
1x1 km or 2 x 2 km regular grid at a height approximately 30–50 centimeters 
off the ground (Jansen et al. 2014; Rovero and Ahumada 2017).  
Kays et al. 2020 found that 25–35 camera sites were needed for precise 
estimates of species richness. The precision of species-level estimates of 
occupancy was highly sensitive to occupancy level, with fewer than  
20 camera sites needed for precise estimates of common species, but more 
than 150 camera sites likely needed for rare species. Running a camera at a 
site for 3–4 weeks was needed for precise estimates of the local detection 
rate. Metrics for all mammal communities were sensitive to seasonality. At 
the same time, differences in the performance of camera trap models and 
settings were evaluated by Palencia et al. (2021), who also provided empirical 
guidelines for best practices in camera trapping.

Photo by Mokhamad Edliadi/CIFOR-ICRAF
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Drone ecology

Frazier and Singh (2021) provided a general introduction to integrating drone data into 
real-world applications and applying this knowledge to environmental monitoring and 
land-use studies. Since the pioneer ‘conservation drones’ of Koh and Wich (2012), 
this technology is increasingly used for a wide range of applications in ecology and 
biodiversity conservation (Manfreda et al. 2018; Nowak et al. 2019; López and Mulero-
Pázmány 2019; Wich and Koh 2018), more specifically for marine animal research but 
also terrestrial wildlife population survey and monitoring, e.g. orangutan populations 
(Szantoi et al. 2017; Burke et al. 2019), macaques (Fornace et al. 2014), langurs 
(Gazagne et al. 2023), flying-foxes (McCarthy et al. 2021), and elephants (Hartmann et 
al. 2021; Rahman et al. 2023). 

Unmanned aerial vehicles (UAV) technologies and miniaturized remote sensing sensors 
adapted for them are evolving quickly. The tool suffered earlier shortcomings, mainly 
because of the short flight duration capability, legal constraints that continue, and 
complicated permit applications in many countries. In addition, users must remember 
that besides surveillance and ethical issues, drone deployment also raises important 
critical questions for wildlife and people in its vicinity (see section 2)  
(Sandbrook 2015; Millner et al. 2023; Jackman et al. 2023; Sauls et al. 2023). Some 
bears, for instance, have shown heartbeat disturbance when approached by drones, 
and low-flying UAVs caused a herd of bighorn sheep to scatter (Ditmer et al. 2015). 
Elephants appear very sensitive to drone noise (Mesquita et al. 2022), which they 
perceive as identical to bee swarms (King et al. 2018). Recent developments for 
mapping and surveying purposes are towards the use of vertical take-off and landing 
(VTOL) drones that combine the practicality of vertical take-off and landing and the 
capacity to transform into fixed-wing craft once into the air, with much longer flight time 
and larger range of operation and a higher payload capacity (e.g., LIDAR, Multispectral 
and Thermal/IR cameras and very high-resolution sensors, up to  
61 megapixels).

Illustration by Komarudin
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Bio and  
Eco-acoustics

The bio-acoustic approach is well-known in biodiversity inventories (Obrist et 
al. 2010). It focuses on recording sounds produced by living organisms (e.g. 
birds, bats, fish, insects, mammals), identifying species and analysing animal 
vocalisations and calls, studying behaviors and communication patterns. 
This approach can provide insights into animal interactions, mating calls, 
territoriality, migration patterns, and responses to environmental changes. 
Bioacoustics is widely used in wildlife research, conservation biology, and 
ecological studies to monitor species’ presence, abundance, and behaviour 
through acoustic signatures. Eldridge et al. (2018) highlighted a correlation 
between bird species richness and eco-acoustic data, although it appeared 
valid for temperate datasets and not for tropical ones.

Sound analysis can also be applied to study landscape configuration (Fuller 
et al. 2015). The eco-acoustic approach analyses sound recordings from 
natural environments to categorize and monitor landscapes, evaluating the 
global acoustic environment (‘soundscape’) of an area (Pijanowsky 2011; 
Sueur et al. 2014). Researchers can gain valuable insights into the dynamics 
of the landscape. Several indices (e.g., Soundscape Saturation Index) have 
been proposed that aim to capture community-level dynamics by providing 
statistical summaries of the frequency or time domain signal (Pieretti et al. 
2011; Farina 2014; Sueur et al. 2014) or of the time-frequency dynamics, 
claimed to be more ecologically robust (Eldridge et al. 2016). Sound diversity 
declined and became less synchronized with forest fragmentation and loss 
in Papua New Guinea and Borneo (Burivalova et al. 2018; 2022). A recent 
application of soundscapes and deep learning enabled the tracking of 
biodiversity recovery in tropical forests in Ecuador (Müller et al. 2023).

1.5	 Biodiversity and ecological modelling

By combining these field data, remote sensing GIS technologies and digital 
tools, modelling results can inform land-use planners, conservation planners, 
and decision makers, providing evidence-based scenario comparisons 
to promote sustainable land use practices, biodiversity conservation, and 
landscape management.

In addition to climate change modelling not discussed here, various 
biodiversity-related models can assist in conservation planning and land 
use decision-making processes. Species Distribution Models, or SDMs 
(Elith and Leathwick 2009) and Habitat Suitability Models, HSMs, often 
using the popular maximum entropy MaxEnt model (Phillips et al. 2006; 
Elith et al. 2011), predict species’ potential distribution or habitat suitability 
for specific species based on environmental variables. Connectivity models 
evaluate landscape connectivity for wildlife movement and dispersal, 
guiding the design of ecological corridors and habitat networks, for 
example, Circuitscape based on circuit theory, (McRae et al. 2008, 2016); 
or approaches based on the graph theory and network analysis (Urban and 
Keitt 2001), for example, Conefor 2.6, (Saura and Torné 2009) (see also  
Box 5). All these models guide conservation strategies to maintain population 
viability and help prioritise conservation or restoration areas (Saunders et al. 
2023). Together with land use and land cover change models, they assess 
the impact of land use changes on species populations, assisting in scenario 
planning. Finally, ecosystem services modelling quantifies and maps the 
benefits provided by ecosystems, informing sustainable development that 
considers both ecological and human well-being aspects. The next section 
addresses them in more detail since biodiversity often mediates them.

https://circuitscape.org/
http://conefor.org/coneforsensinode.html,
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The ecosystem services (ES) concept has garnered significant attention in 
recent years. ES are the ecological characteristics, functions, or processes 
that directly or indirectly contribute to human well-being, that is, the benefits 
people derive from functioning ecosystems  
(Costanza et al. 1997; Millennium Ecosystem Assessment - MEA, 2005). It is 
essential to distinguish between ecosystem processes and functions, on the 
one hand, and ecosystem services, on the other (Costanza et al. 2017). 

The MEA 2005 proposed the following categorization into four broad types, 
which were adopted but slightly modified in The Economics of Ecosystems 
and Biodiversity project (TEEB 2010): provisioning (food, water, timber, 
genetic and medicines resources, agrobiodiversity), regulating (climate 
regulation e.g. temperature, precipitation, greenhouse gas; water regulation, 
run-off flooding; erosion; water purification; pollination), supporting 
(photosynthesis, primary production, C sequestration, water and nutrient 
cycling, genetic diversity, provision of habitats), and cultural services, or 
non-material benefits that people can obtain from ecosystems (spiritual 
enrichment, recreation and aesthetic values).

Ideally, the types of ecosystem services (ES) to be assessed and monitored 
should be decided collectively by the stakeholders, acknowledging that 
work on some of the ES mentioned above is often challenging in poor data 
regions. In such areas, the most likely ES to be available are the provisioning 
and supporting services. The most accessible supporting service will be 
carbon sequestration due to the plethora of carbon REDD+ projects in recent 
years. Habitat provisioning is also an option.

Habitat provisioning by forests and other natural or human-made vegetation 
for multiple taxa and trophic levels is considered an essential ecosystem 
service, positively influencing forest ecosystem functioning. There is an 
issue of definition, although linked with scale: for some, ‘habitat’ means 
considering forest vs. grassland and agriculture fields at the landscape level. 
For others, it could mean the various land facets within a forest (lower-, 
mid- or upper slope, ridges) or even within the structure itself of the forest 

Box 5. Graph Theory and Circuit Theory approaches to 
connectivity

Graph Theory conceptualizes the landscape as a network where 
habitat patches are nodes and dispersal pathways are edges. This 
framework, introduced into landscape ecology by Urban and Keitt 
(2001), allows for the assessment of connectivity by calculating 
metrics such as patch importance, shortest paths, and network 
cohesion. It is especially useful for evaluating which patches or 
corridors are most critical for maintaining overall connectivity, often 
using binary representations (connected or not) of movement 
potential.

In contrast, Circuit Theory, implemented in tools like Circuitscape, 
models the landscape as an electrical circuit (McRae et al., 2008). 
Here, the matrix is treated as a resistive surface, and animal or gene 
movement is analogized as electrical current flow. This approach 
accounts for multiple, probabilistic pathways, not just the single 
least-cost route. It is particularly powerful for identifying movement 
bottlenecks and for modeling connectivity under uncertainty or 
heterogeneity in the landscape.

Together, these two methods offer complementary perspectives: 
Graph theory excels at network structure analysis and priority setting, 
while circuit theory captures diffuse flow dynamics and redundant 
pathways, both of which are vital for conservation in fragmented or 
changing environments.

Source: Authors
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(undergrowth, canopy, niches, microhabitats). Here, we prefer to use 
‘vegetation types’ at the landscape level and consider ‘habitat’ within each 
vegetation class assessed in point 1.1. 

Many ES modelling and valuing tools exist (Bagstad et al. 2013); the most 
commonly used are Integrated Valuation of Ecosystem Services and 

Box 6. Most used Ecosystem Services modelling and valuing tools

InVEST (now version 3.9.) is a free software developed by the Natural 
Capital Project (a partnership between the universities of Stanford and 
Minnesota in the United States). It offers biophysical and/or monetary 
indicators for EGS using an approach based on ecological production 
functions. Typical inputs include land-use and land-cover (LULC) maps, 
climate, topographic and soil data. The InVEST tool has been applied in 
various locations worldwide, mainly to compare future land use scenarios 
under different policies. InVEST is modular, relatively easy to run, and 
does not require programming knowledge but basic to intermediate skills 
in GIS software. https://naturalcapitalproject.stanford.edu/software/invest

More complex, ARIES is an artificially intelligent modelling platform that 
chooses which models to run in response to a user query, based on the 
Knowledge Laboratory (k.LAB) technology: an AI-powered and digital 
software for rapid ecosystem service assessment and valuation. ARIES 
is well suited for land use planning, spatial mapping and quantification of 
ecosystem services, spatial economic valuation of ecosystem services, 
or optimization of payment schemes for Ecosystem Services (PES). It has 
been recently adopted by the Statistics Division of the UN Department 

of Economic and Social Affairs (UN DESA) and the UN Environment 
Programme (UNEP) as the SEEA Explorer platform. https://aries.
integratedmodelling.org. Bagstad et al. (2014), Balbi et al. (2015), and 
Willcock et al. (2018) provide examples.

TESSA (v.3) has been developed to determine the ecosystem 
services to evaluate, the necessary data for their measurement, the 
appropriate methods or resources applicable in various scenarios, 
and the subsequent communication of the outcomes. Decision trees 
are employed to direct users towards particular methods, along with 
supplementary advice on data gathering and analysis, to enhance user-
friendliness. However, because sites vary widely, methods are designed 
as templates only, and users need to adapt the methods according 
to local conditions (Peh et al., 2013). It is presented as being more 
accessible to non-experts and conservation practitioners than InVEST 
and ARIES. https://birdlife-hatch.org/topics/30877/page/assessing-
ecosystem-services-tessa

Source: Authors

Tradeoffs (InVEST), Artificial Intelligence for Ecosystem and Sustainability 
(ARIES) and Toolkit for Ecosystem Service at Site-based Assessment 
(TESSA) (see Box 6).

https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
https://aries.integratedmodelling.org
https://aries.integratedmodelling.org
https://birdlife-hatch.org/topics/30877/page/assessing-ecosystem-services-tessa

https://birdlife-hatch.org/topics/30877/page/assessing-ecosystem-services-tessa

https://birdlife-hatch.org/topics/30877/page/assessing-ecosystem-services-tessa

https://naturalcapitalproject.stanford.edu/software/invest
https://www.ipbes.net/policy-support/tools-instruments/toolkit-ecosystem-service-site-based-assessment-tessa-v20
https://www.ipbes.net/policy-support/tools-instruments/toolkit-ecosystem-service-site-based-assessment-tessa-v20
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2	 Biodiversity Monitoring at the Local Scale

Building upon the recommendations on using conventional biodiversity 
science in the preceding section, this second part of the guidelines shifts 
towards participatory research and practical applications. Assuming that 
relevant local government officials and community actors have been 
engaged in identifying their priorities and needs, this section aims to 
propose field tests of participatory methods in biodiversity assessment 
across multiple communities. By field-testing these methods at the 
grassroots level, the objective is to generate insights that will inform 
subsequent discussions and decisions on collaborative implementation 
strategies for biodiversity conservation in human-modified landscapes. 
Moreover, this part of the guidelines seeks to establish connections 
between conventional scientific approaches and traditional knowledge 
systems, fostering an all-inclusive understanding of biodiversity 
conservation practices. IPLCs’ perceptions of biodiversity are deeply tied to 
their cultural, spiritual, and practical relationships with nature. Understanding 
these perspectives can enrich global biodiversity frameworks and highlight 
the importance of integrating traditional ecological knowledge into 
conservation efforts.

Photo by Khairul Abdi/CIFOR-ICRAF
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2.1	 Participatory mapping, perceptions and 
folk classification of the ecosystems and 
biodiversity

Initiating a study of landscape perceptions with participatory mapping not only 
provides valuable insights into how communities interact with and interpret 
their environment, but also promotes community engagement. This inclusive 
approach respects local knowledge systems, fostering a sense of ownership 
and pride among community members. This, in turn, can lead to more holistic 
and culturally sensitive research outcomes, enriching the understanding of 
the landscape and its significance to the community (Lynam et al. 2007).

Participatory mapping (Lynam 2001; Chambers 2006) should follow 
the general principles set out by the International Fund for Agricultural 
Development (IFAD) (2009) and consider recommendations made by 
Denwood et al. (2022) and Braslow et al. (2016) when linked to communities’ 
perceptions of ecosystem services. In addition, when specifically using 
drones, one should consider further recommendations from Millner et al. 
(2023) and the UAViators code of conduct (n.d). 

While drones have been extensively used in ecology (see section 1.3. 
above), they have been less used on the socio-political front. They are often 
associated with surveillance, ethical concerns, and potential amplification of 
conflict dynamics and social exclusion (Sandbrook et al. 2021; Millner et al. 
2020; Jackman et al. 2023), e.g., as tools for political interventions against 
land grabs by palm oil and mining companies and counter-mapping (Radjawali 
and Pye 2017; Radjawali et al. 2017). However, they have been used with 
success for community-based monitoring and participatory mapping 
(Paneque-Gálvez et al. 2014, 2017), including situations when communities 
are entirely in control of the tool (see the ‘community drones’ of Vargas-
Ramírez and Paneque-Gálvez, 2019).

Below is a basic protocol for drone participatory mapping linked to knowledge 
co-production, folk classifications, perceptions of landscape, ecosystem 
services and biodiversity. This protocol aims to bridge the gaps between 
scientists and local knowledge, which is crucial for efficient landscape and 
biodiversity monitoring. 

2.1.1 Participatory mapping initial steps
The first field visit for a participatory mapping exercise is often conducted with 
customary leaders and elders to understand how they perceive their territory 
and land use’s position in the landscape. 

A general base map (approximate 1:10,000 in scale) can be prepared in advance 
(satellite image, Google Earth print) and brought to this first visit, depicting 
neighbouring villages, roads, principal rivers and mountain peaks around the 
village(s). Whenever possible, apply geo-referenced border points to this base 
map so as to train local communities to eventually use GPS. This first approach 
aims to gain a basic understanding of the village’s boundaries, activities, history, 
and socio-economic situation. After the introductory tour, a village meeting is 
organized to explain the objectives and methodology of the mapping project 
and obtain Free, Prior and Informed Consent (FPIC) (see Box 7). Neigbouring 
villages must also be informed.

In the second visit, an initial scoping survey in the field should be carried out 
with knowledgeable community members who can share local traditional 
ecological knowledge of the landscape and its vegetation. Local ‘experts’ can 
be identified with the help of community members, leaders, and informants from 
local NGOs already working in the area, eventually supplemented by snowball 
techniques (Bernard 2002) to find other informants. These village experts will 
become key informants for different landscape topics, such as forest types 
and land use, tree diversity, and medicinal plants. They can also help create a 
calendar of agriculture and other main subsistence activities (for instance, in 
conjunction with activities in section 2.2.i below).

Without a drone, sketch mapping is produced at that stage (see Appendix 3.1.). 
If a drone is available, flying missions can then be organised with community 
members’ participation. 

https://www.preventionweb.net/organization/uaviators-humanitarian-uav-network
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2.1.2 Participatory drone mapping
A classic unmanned aerial system includes either fixed-wing or multirotor 
aircraft, equipped with a 12 to 24 Mp RGB sensor camera mounted on a 
stabilised gimbal, a lithium polymer battery for power, a radio communication 
system, and a dedicated controller. On board, most drones also include GPS 
and various sensors to help avoid collisions and intelligent flight modes that 
can automatically focus on a point of interest or track a moving subject. 
Recent developments are towards the use of vertical take-off and landing 
(VTOL) drones that combine the practicality of vertical take-off and landing 
and the capacity to transform into fixed-wing craft once into the air, with at 
present means much longer flight time, higher payload capacity and larger 
range of operation.

In addition, users will need drone mission planning software, among others, 
Mission Planner, DroneLink, or DJIFlightPlanner to pre-set fly line patterns. 
The flying heights range from 120–350 m above ground, depending on 
topographic conditions and country regulations for using aerial space with 
drones. Image acquisition should be set up with a front overlap of 75–85 
percent and a side overlap of 70–75 percent, following a plan of back-and-
forth flight lines (boustrophedonic lawnmower pattern) and the camera 
pointing straight down (nadir) on all photos (see Appendix 3.2.). In addition, 
supplementary flights to capture oblique images should be considered 
because they produce better identification results across all participants 
(Kleinschroth et al. 2022).

After collecting the orthophotos, specific software is used to analyse the 
photos and produce orthophoto mosaics (e.g., Agisoft Metashape ; Pix4D. A 
less expensive solution is to use web-based Maps Made Easy).

2.1.3 Final map co-production/folk classification
This orthophoto mosaic (or the sketch map when drone product is unavailable) 
should be printed on a large document (preferably A3 minimum) and shared 
with community members as a base map showing the main rivers, roads, 

Box 7. Free Prior and Informed Consent

Free Prior and Informed Consent (FPIC) is a complex concept 
that lacks a universally accepted definition and can be interpreted 
differently. This often leads to a gap between international norms and 
actual practice in different countries. 

Still, many international scholars interpret FPIC as ‘the rights of 
Indigenous People to exercise their right of self-determination under 
international human rights law instruments such as the International 
Covenant on Civil and Political Rights.’ 

For the International Fund for Agricultural Development (IFAD) (2021), 
“Free, prior and informed consent is an operational instrument that 
empowers local and Indigenous Peoples’ communities, ensuring 
mutual respect and full and effective participation in decision making 
on proposed investment and development programmes that may 
affect their rights, their access to lands, territories and resources, 
and their livelihoods. FPIC is an iterative process solicited through 
consultations in good faith with the representative institutions 
endorsed by communities”.

The Food and Agriculture Organization of the United Nations (FAO) 
interpreted FPIC as “a specific right granted to Indigenous Peoples 
recognised in the UN Declaration on the Rights of Indigenous 
Peoples (UNDRIP), which aligns with their universal right to self-
determination”. FAO has developed a manual for practitioners  
(FAO 2016), including a toolkit and eLearning tools.

E-learning: Free, Prior and Informed Consent (FPIC). An indigenous 
peoples’ right and a good practice for local communities, 2016.

Source: Authors

https://ardupilot.org/planner/
https://www.dronelink.com/
https://www.agisoft.com/features/professional-edition/
https://www.pix4d.com/
https://www.mapsmadeeasy.com/
https://www.fao.org/indigenous-peoples/pillars-of-work/free--prior-and-informed-consent/en
https://www.fao.org/indigenous-peoples/pillars-of-work/free--prior-and-informed-consent/en
https://elearning.fao.org/course/view.php?id=500
https://elearning.fao.org/course/view.php?id=500
https://birdlife-hatch.org/topics/30877/page/assessing-ecosystem-services-tessa
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paths, and land uses. The photomosaic should be laid on a large table or 
floor and oriented towards the north. Community members locate different 
landscape units and vegetation cover types using this photomosaic, draft 
them on tracing paper superposed on the photomosaic, and discuss 
associated specific uses. 

Participants could discuss the nature of the tree cover and the various 
interpretations of such terms as ‘forest’, ‘woodland’, ‘swamps’, ‘fallows’, 
‘gardens’, and ‘food crop fields’ and what variations there may be (age, 
different species mix, different levels of utilization and management). 
Villagers can draw the borders of their territory indicating potential zones 
of conflicts, if any (in such a case, no border is drawn); the main natural 
resources, the different types of land and the related uses, such as fallows, 
protected areas, etc. Symbols for the various land uses, if applied on 
the map, should be created before the meeting, following the land-type 
classification established by the local community during focus group 
discussions. It is good practice to have men and women divided into two 
groups, with each group consulted separately, creating two sketch maps 
(see Appendix 3.3.).

Once the participants’ perceptions of the generic categories of land-use 
types have been identified, each group is asked to describe each land use 
in detail to identify local subcategories (Vogl et al. 2004). Then, details of 
activities inside each land-use type are described. This exercise is crucial to 
collaboratively identifying the different land uses, practices, and vegetation 
types surrounding the village.

The final maps (women’s and men’s, either sketch map or interpreted 
orthophoto mosaic) are brought to the village’s general assembly and 
discussed/commented on. At that stage, the maps can also be merged 
and legalized, being at scale and representing concrete, realistic views 
of the community territory to be used in potential land negotiations with 
developers.

2.1.4 Ground checking
The exercise can stop there or continue with a joint ground check organised 
with community members, recording structural and floristic data for each 
land use/vegetation. A village meeting should then be organised: first to 
explain why such measurements are required, aligning with information 
on the map they co-produce (REDD+ project, land use and management 
plan, monitoring of changes in the quality of the environment, habitat, local 
natural resources, etc.…see, for instance, Danielsen et al. 2011, who found 
no significant differences in the estimates of mean above-ground biomass 
made by community members and by professional foresters). 

Community members are then trained by a specialist (from a university, NGO, 
or forester) to establish plots, measure tree diameter, estimate height, and 
record and name tree species encountered. The techniques used do not 
differ much from the academic approach and can align with the participatory 
recording of the provisioning services in the next section. The plots are 
generally circular (0.1 ha, radius of the circle equal to 17.85 m, or 0.2 ha, radius 
equal to 25.23 m; tree diameter above 5 cm) since they are easier to set up 
with fewer potential measurement errors from non-surveyors. Participants 
use local names and must be encouraged to not name a tree if they are not 
certain of its name. Participants can agree together on a proposed name. 
In case of doubt, they should collect twigs and leaf samples to bring them 
back to the village for potential further identification by others and, eventually, 
a botanist at an herbarium. Tree heights can be estimated using cheap 
clinometers (e.g., a protractor; see Appendix A2.1.).

The training starts with a classroom-type session describing the 
background for doing the inventory (monitoring of forest carbon, the 
importance of accuracy), correctly using all equipment for plot delineation 
and tree measurement, and the applied inventory techniques. Following this 
first session, all community participants will join in measuring a ‘dummy plot’ 
closely supervised by the specialist. Special notice will be given to possible 
biases and ways to avoid them. The next day, community teams (e.g., two to 
three teams of three to four members) will split up and do two to three plots 
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in the forest. Each team will be accompanied by specialist team members, 
who will supervise the work and offer corrections and suggestions for 
improvement. All data collected during this training day will be analysed in 
the evening, discussed, and later discarded so as not to compromise the 
integrity of the final dataset.

2.2	 Assessing cultural and provisioning 
ecosystem services

To supplement participatory mapping while assessing cultural and 
provisioning ecosystem services, conducting qualitative semi-structured 
and structured interviews is recommended, supplemented by quantitative 
methods such as the Pebble Distribution Method (Sheil et al. 2002) and Free 
Listing (Weller and Romney 1988; Quilan 2017). The Guidelines for the Rapid 
Assessment of Cultural Ecosystem Services (GRACE), described in Infield 

Photo by Yves Laumonier/CIFOR-ICRAF

et al. (2015), provide guidance on other important tools such as timelines, 
cultural calendars, ranking exercises, photovoice and photochoice, and 
exploring responses to attitude statements  
(Likert scales).

2.2.1 Semi-structured interviews, Timelines and Cultural 
calendars
Semi-structured interviews with the same people who participated in 
the scoping survey, or with randomly chosen new people – for example, 
15 to 30 farmers – can be used to identify local landscape management 
practices. A set of questions covers the attributes of farms and information 
on management practices, from creating a new farming plot to permanently 
established or temporary agricultural land uses. Other questions can 
address harvests, plant diseases, and problems (for instance, changes in 
seasonal patterns). Following the procedure recommended by Vogl et al. 
(2004), interviews can also cover identifying the local uses of tree species. 
Walking through the owners’ fields/gardens with him/her during each 
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interview is a must since it will enhance the reliability of the information. For 
commercial species, record the sales prices and market locations. 

In addition to the history of the settlement (Adriansen 2012) and cultural 
calendar, it is essential to learn about the plot’s history, including when it 
was opened for the first time, under forest cover or not, whether it was 
under a fallow cycling system, and how many times it has been cultivated.

2.2.2 Scoring exercises on the perception of land categories 
and overview of which type of land is valued for what kind 
of use 
Focus group discussions (FGDs) using the Pebble Distribution Method 
(PDM) as a scoring exercise (Colfer et al. 1999; Sheil et al. 2002) are 
organized for four different participant groups, each with six to ten 
individuals. These should include young men (under 35 years old), older 
men (over 35 years old), young women (under 35 years old), older women 
(over 35 years old). The purpose is to value the importance of land 
categories and main natural resource uses (see forms labeled data sheets 
(DS 1, DS 2 and DS 3 in Appendix 4.1 to 4.3), and quantify the relative 
perceived value of each land use, according to gender and age. The PDM 
method is a flexible, simple diagnostic scoring procedure that clarifies 
participants’ understandings and priorities. The results of DS 2 and DS 3 are 
used to build the matrix of DS 4.

Participants distribute 100 pebbles among cards representing the different 
land use systems, the most important land use having the highest number 
of pebbles. Then, the participants will be asked to place the pebbles 
on the land unit cards according to their relative importance regarding 
income (see Appendix 4, data sheet 4). Different land uses and land cover 
are rated for the following functions: income, overall use category, and 
individual use categories (food, medicine, market, traditional ceremony, 
livestock, agriculture, firewood, fodder, construction, basketry, mining, 
hunting, fishing, fruit trees, charcoal, among others); and livelihood (hunting, 
agriculture, livestock, fishing, non-timber forest products (NTFP) sales, 

healing, timber selling). Finally, the villagers are also asked to distribute the 
pebbles on cards expressing their perceptions of the forest’s present, past 
and future (Appendix 4, data sheet 5).

2.2.3 Free Listing 
Free listing is a structured interview method used in cognitive anthropology, 
ethnobiology and socio-ecological research to elicit systematic data on 
‘cultural domains’ (Quinlan 2005, 2017). A ‘cultural domain’ is an organized 
set of words, concepts or sentences comprising a single mental category or 
semantic domain (Weller and Romney 1988). 

The free listing interview consists of asking the respondents to create 
an inventory of all the items they know within a given category (domain), 
uncovering the most culturally salient items of the domain (based on their 
frequency of mention across lists and their rank of citation within lists), see 
Smith and Borgatti (1997), Sutrop (2001) and Quinlan (2017). The two most 
important results from the free listing are the frequency and order with 
which each item is cited across all respondents. According to cognitive 
anthropology, items mentioned frequently and near the top of the lists are 
culturally important. Also of interest are the differences in list length and 
content, which reveal intra-cultural variations in respondents’ knowledge 
(Quinlan 2005). 

For most coherent domains, having 20 to 30 informants is usually sufficient 
(Weller and Romney 1988). Respondents are asked, for instance, to name 
wood for house building, landscape or land use features, medicinal plants 
from the forest, wildlife, diseases, etc. For biodiversity and ethnobiology, 
this approach provides an idea of what species are culturally significant to a 
person (Borgatti and Halgin 1998) and what species the villagers know best 
or generally use most. The informants, 10 to 12 men and 10 to 12 women are 
randomly chosen, with the goal of including two to three persons per age 
class (under 30, 30–45, 45–60, over 60 years old) to represent all ages of 
the society.
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All growth forms (not only tree species) and wildlife can be included 
in the free-listing exercise for different land uses to capture all the 
biodiversity that communities use. This method makes it possible to collect 
supplementary data about local uses of species in forests, fallows, mixed 
gardens, for example, and to identify other critical valuable species. It can 
start with broad items (“all the plants you can think of”), then narrow the 
domain in additional interviews (“all the medicinal plants you can think of 
in the forest”, a process often called ‘successive free listing’ (see Brewer 
2002).

The data can be analysed using cultural domain analysis software, such as 
ANTHROPAC v. 4.98 (Borgatti 1989) in combination with Excel (Smith 1993) 
or using the online, open-source software for free-list analyses Free-List 
Analysis under R Environment (FLARES) using Shiny,  
(Wencelius et al. 2017). Its initial version, called FLAME, was reviewed by 
Borgatti (2015).

Using the FLARES tool, the differences in species cited between the 
different gender and age groups are analysed. FLARES can identify 
duplicate items in the same list and analyse data saturation to determine 
when enough data has been collected. FLARES can calculate two salience 
measures, Smith’s S (Smith and Borgatti 1997) and the Sutrop index 
(Sutrop 2001). It highlights the psychologically or culturally important tree, 
medicinal plant species or wildlife, differentiation in species choice, and 
the degree of importance according to gender. Species with the greatest 
salience are those that respondents list the most often and tend to recall 
before other species (Borgatti and Halgin 1998). FLARES not only places 
statistical weight on the rank of each species in the list but also on the 
overall length of each list. Species named by at least two informants are 
considered, and the ten highest Smith S values from the men and the 
women are identified.

To quantify the qualitative differences between species listed by men and 
women, a similarity index (measured in percent) can be calculated for each 
use. Then, the composite salience value of each species for each use 
can be determined separately for men and women. For each use, and for 

men and women, a bar graph or a scree plot can be created, showing the 
species classified in descending order of composite salience value, thus 
setting out the highly salient, salient and less salient species based on the 
observation of salience thresholds (Quinlan 2005, 2017). 

The recommended format for preparing the data to be analysed by FLARES 
is in Appendix 4.4.

2.2.4 Photovoice
Photovoice gives a voice to people with limited power due to age, poverty, 
language barriers, gender, culture or other circumstances. People involved 
in Photovoice learn to reflect on their own experiences and to capture 
these experiences in photos accompanied by narratives that explain how 
the photos highlight a theme. This process allows individuals to speak 
out to generate data for research, advocacy or communication purposes, 
which can eventually be used to reach out to stakeholders and spur 
positive change. 

Photo by Malaika Yanou/CIFOR-ICRAF

http://www.analytictech.com/anthropac/anthropac.htm
https://www.anthrocogs.com/shiny/flares/
https://www.anthrocogs.com/shiny/flares/
https://rutgers.international/resources/photovoice-factsheet/
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2.3	 Develop a citizen science approach 

Citizen science, also referred to as community science or participatory 
research, is the practice of engaging the public in scientific research and 
monitoring (MacPhail and Colla, 2020; Theobald et al. 2015). It encompasses 
many disciplines from biology to astronomy, and people of all ages, abilities, 
and backgrounds can participate in these projects. Currently, there are 
numerous citizen science projects across the world, and they are rapidly 
gaining recognition for their potential to democratize science and support 
effective conservation (Couvet and Prevot 2015; Pocock et al. 2019; 
Skarlatidou et al. 2020).

Citizen science is a powerful tool for collecting information on natural 
resources and biodiversity trends at both local and landscape levels (Poisson 
et al. 2020). Data from citizen science projects can help answer questions 
related to the abundance, distribution, and behaviour of species, their habitats, 
and ecosystems (Bowser et al. 2020; Callaghan et al. 2020). It can help large-
scale projects by increasing the spatial and temporal scope and the rate of 
data with minimal cost (MacPhail and Colla 2020). 

Citizen science also increases awareness, knowledge, and skills among 
participants. The outcomes can vary depending on the projects, but 
participation can increase understanding and interest in science. Increasing 
public engagement and nature-based experiences can also help people 
connect with nature. Participation provides societal benefits by developing 
local capacity for biodiversity surveys and by informing and empowering 
local people to manage biodiversity (Couvet and Prevot, 2015). Thus, citizen 
science helps identify and prioritise conservation and management actions 
(Fraisl et al. 2020; Villaseñor et al. 2016). It has been argued that citizen 
science projects that address real-world problems have greater potential to 
impact public understanding (Pandya 2012; Senabre Hidalgo et al. 2021). 
Biodiversity is often not perceived as an immediate priority by communities 
facing livelihood challenges and limited economic resources, and this can be 
an obstacle that citizen science initiatives may help address.

Implementing a citizen science approach requires careful and strategic 
planning. Although it can be an effective tool for scientific data collection 
and engagement, its success relies on ongoing support and engagement 
with the participants (Tweddle et al. 2012) and good knowledge of the 
potential limitations of the data (Snäll et al. 2011; Balázs et al. 2021; Fraisl et 
al. 2022). Depending on the context, the following three main approaches 
(Bonney et al. 2009; Shirk et al. 2012; Bonney et al. 2014) can be adopted 
for conducting citizen science projects, although many consider only 
two: contributory or co-created. Tools that support such initiative are 
given in Table 2.

Figure 5. Rangers’ use of SMART for lion conservation (Brassine 2024). The SMART (Spatial 
Monitoring and Reporting Tool) platform consists of a set of software and analysis tools 
designed to help conservationists manage and protect wildlife and wild places (https://
smartconservationtools.org/en-us/).

https://smartconservationtools.org/en-us/
https://smartconservationtools.org/en-us/
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Co-created  
project model 

Fully co-created projects are still rare (Senabre Hidalgo et al. 2021). Such 
projects are designed collaboratively by scientists and local communities 
who co-create a research programme that builds on participatory social 
sciences approaches or social concerns expressed by diverse groups 
of citizens (Bonhoure et al. 2019). The project team should include 
representatives from different stakeholder groups and work together to 
define goals and methods to collect and analyse data. The Cybertracker and 
Sapelli applications are probably the best development tools available today 
for such co-created projects (see Moustard et al. 2021 and the development 
of ‘Extreme Citizen Science’).

None of these models is better or worse than the others. Still, as one of 
the main principles of ILAs is to make it as collaborative as possible; that 
is, collaborative and co-created approaches are the approaches of choice 
for ILAs.

For more details on the various steps for developing and implementing 
a citizen science project, see the Tweddle et al. (2012) Guide to 
Citizen Science.

Contributory  
project model

The contributory model of citizen science (Fraisl et al. 2022) is researcher-
driven and focused mostly on large-scale data collection by volunteer 
participants, who primarily collect data according to clearly defined 
guidelines. This approach is suitable for engaging diverse participants, 
raising awareness of an issue, and gathering large volumes of data over a 
wide geographic area. However, it is driven by scientists’ needs rather than 
the participants. It is suitable for landscape-level monitoring using global 
citizen science tools such as GBIF, eBird, Zooniverse, or iNaturalist (see 
Box 10).

Collaborative  
project model

This approach also includes projects designed by scientists, but 
participants are involved in more than one stage of the scientific 
process, such as developing research questions or analysing data. For 
instance, a team of local community members, such as a group of school 
teachers, can be trained to design and implement biodiversity surveys 
and collect quality specimens of plants, birds, and insects documented 
by photographs and their classes. An excellent example of such a 
collaborative citizen science model has been recently developed in 
Kalimantan, Indonesia, where local communities were actively engaged 
in biodiversity monitoring design, data collection, and adaptive feedback 
(Omar et al., 2025).
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Table 2. Potential citizen science tools for biodiversity monitoring 

Apps Details

PlantNet (the App) For identifying and monitoring plants https://identify.plantnet.org Contributory

iNaturalist For monitoring varying taxa https://help.inaturalist.org/en/support/solutions/
articles/151000170805-inaturalist-teacher-s-guide

Contributory

ebird For monitoring birds (For eBird best practices see Strimas-Mackey et al. 2023) Contributory

zooniverse A popular platform for volunteers to assist professional researchers, including projects on 
nature, plants and wildlife.

Contributory

iSpot For ecological observations Contributory

WhatSpecies Targeted mainly for youth Contributory

Sapelli (https://www.sapelli.org)

(see Moustard et al. 2022)

Citizen Science. Open-source Android app that facilitates data collection across language or 
literacy barriers through highly configurable icon-driven user interfaces; easily linked to GeoKey

Collaborative or  
Co-created

GeoKey (www.geokey.org.uk) GeoKey provides server-side components to run participatory mapping projects Collaborative or  
Co-created

ArcGIS Survey 123 For creating and sharing surveys and analyzing results. Create forms, collect data using web or 
mobile devices, even when disconnected from the internet. Analyze results on the web or in an 
ArcGIS app.

Collaborative

Avenza map Mobile map app (Android and iOS) that allows to download maps for offline use Collaborative

EpiCollect 5 app A mobile (Android and iOS) & web application for free and easy data collection Take pictures, 
audio recordings etc

Collaborative

ODK (Open Data Kit) ODK is a open-source suite of tools that allows data collection using Android mobile devices 
and data submission to an online server, even without an Internet connection or mobile

Collaborative

continued on next page >>

https://play.google.com/store/apps/details?id=org.plantnet&hl=en_CA&gl=US
https://www.inaturalist.org/
https://ebird.org/home
https://www.zooniverse.org/
http://www.ispotnature.org
http://www.whatspecies.com
https://www.sapelli.org
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Apps Details

Trailmark Mobile Mobile data collection app for Android. Ground-truth spatial data in the field, conduct field 
surveys to document land use and observations with real-time data, including voice recordings, 
photographs, GPS tracks.

Collaborative

KoboToolbox Free (for NGOs) open-source tool for mobile data collection, management, and visualization Collaborative

ArcGIS Collector Mobile data collection app (Android and iOS) to collect data in the field and syncing it with 
ArcGIS Online and ArcGIS Field Maps

Collaborative

CyberTracker Online CyberTracker Online is the online version of CyberTracker Classic, a Windows desktop 
application combine with an Android and iOS CyberTracker mobile application. For mobile data 
capture and visualization. It supports form design, data management and reporting.

Collaborative or  
Co-created

Device Magic Smart data collection app Collaborative

GeoCache GPS tracking and marking location Contributory

 Source: Authors; see also Burnett et al. 2023 

>> Table 2. Continued
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Illustration by Komarudin

2.4	Compensation, Rewards, and Incentives 
in Participatory Research

Citizen science emphasizes the importance of community engagement, 
but it also presents a common dilemma in participatory research: 
how should local participants be compensated for their time, expertise, 
and efforts?

Scholars are divided on the practice of paying local communities for 
participating in research programmes. Based on the social beneficence 
principle, ethical perspectives highlight a prima facie moral obligation to 
compensate participants (Izquierto-Tort et al. 2024). Sigouin et al. (2025) 
emphasize that effective resource co-management, including dedicated 
funding mechanisms, is essential for building trust, promoting education, 
and ensuring sustainability in participatory monitoring. Given this ongoing 
debate in participatory research, three best practices are recommended:

•	 Clearly document at the beginning of the project which financial 
category will be used (incentive, reward, or reimbursement), involve 
communities in choosing the type and amount of compensation, and 
include all in the FPIC forms.

•	 Avoid excessive remuneration that could coerce participation, threaten 
voluntary consent, or cause jealousy among non-participants.

•	 Recognize that non-monetary benefits, such as capacity-building, are 
often highly valued and should be part of the compensation package.

Transparent compensation practices will ultimately build trust with local 
populations, strengthening the sustainability of participatory biodiversity 
monitoring in ILA.
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Conclusion

Adopting these guidelines and protocols will facilitate connections between 
conventional scientific approaches and traditional knowledge systems, 
fostering sustainable landscapes that balance ecological integrity with 
socio-economic development. By incorporating these practices into ILA 
initiatives, practitioners can enhance landscapes’ resilience and long-term 
sustainability while promoting biodiversity conservation and community 
well-being.

The guidelines presented here provide a comprehensive framework 
for practitioners engaged in ILAs, offering a structured approach to 
assessing and monitoring biodiversity resources within a landscape. 
Following these guidelines, practitioners can generate high-quality data 
essential for informed decision making in collaborative and integrated 
biodiversity conservation, management, development, and policy actions. 
Utilising these data collection and monitoring protocols will support the 
following key research questions and outputs necessary for the design and 
implementation of ILAs:

•	 How to effectively integrate biodiversity values into policies, planning, 
and development processes, fostering cross-sector collaboration and 
mainstreaming values at various scales;

•	 How to ensure inclusive and equitable participation in decision making 
concerning biodiversity and resource rights, promoting stakeholder 
engagement and empowerment;

•	 How to guarantee the availability of quality information, including 
traditional knowledge, to decision makers and the public, facilitating 
effective biodiversity management through awareness, education, and 
research initiatives?
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Photo by Austin G. Smith/CIFOR-ICRAF
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Appendix 1. Plot Establishment

A 1.1 Large landscape survey
To understand the overall composition of a landscape, it is often more 
effective to start with a network of small plots (e.g. 0.2 ha, 20x100 m) 
distributed across the area, usually chosen through a stratified sampling 
method based on the land unit identified via remote sensing (see Box 4 
in the main text). This sampling approach gives a representative overview 
of the different vegetation types and their spatial arrangement. Once 
this broader picture is in place, targeted permanent plots of one hectare 
(100x100 m) can be used to examine specific vegetation types in more 
detail, allowing for a deeper analysis of their structural features and internal 
ecological processes, especially in complex systems such as forests. 

A good practice is to lay these plots along transects, covering land facets 
(riparian, lower slope, mid -slope, upper slope, ridge). Each plot, following 
contour lines, is about 100 m apart, and various transects are separated by 
at least 200 m (Figure A1). Ideally, this is the work of four persons (including 
one botanist).

Slope correction is conducted to ensure that the quadrats and final plot 
correspond to a horizontal projection (Slope correction: 1/cos arctan  
(% Slope/100). A correction is made every 10 m if the slope is 
homogeneous, or ‘broken’ down following rough topography (see Table A1). 
Slope correction is optional when <5% slope, but becomes essential for 
steeper topography. Photo by Yves Laumonier/CIFOR-ICRAF
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Figure A1. Landscape network of 100 x 20 m plots encompassing land facets (ridge, upper slope, lower slope) and the procedure for riparian plot design
Source: Authors
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Table A1. Slope correction table 

Degree Radians
D slope 
for 10m 

horizontal
D for 5m

1 0,9998 10,00 5,00
2 0,9994 10,01 5,00
3 0,9986 10,01 5,01
4 0,9976 10,02 5,01
5 0,9962 10,04 5,02
6 0,9945 10,06 5,03
7 0,9925 10,08 5,04
8 0,9903 10,10 5,05
9 0,9877 10,12 5,06

10 0,9848 10,15 5,08
11 0,9816 10,19 5,09
12 0,9781 10,22 5,11
13 0,9744 10,26 5,13
14 0,9703 10,31 5,15
15 0,9659 10,35 5,18
16 0,9613 10,40 5,20

Degree Radians
D slope 
for 10m 

horizontal
D for 5m

17 0,9563 10,46 5,23
18 0,9511 10,51 5,26
19 0,9455 10,58 5,29
20 0,9397 10,64 5,32
21 0,9336 10,71 5,36
22 0,9272 10,79 5,39
23 0,9205 10,86 5,43
24 0,9135 10,95 5,47
25 0,9063 11,03 5,52
26 0,8988 11,13 5,56
27 0,8910 11,22 5,61
28 0,8829 11,33 5,66
29 0,8746 11,43 5,72
30 0,8660 11,55 5,77
31 0,8572 11,67 5,83
32 0,8480 11,79 5,90

Degree Radians
D slope 
for 10m 

horizontal
D for 5m

33 0,8387 11,92 5,96
34 0,8290 12,06 6,03
35 0,8192 12,21 6,10
36 0,8090 12,36 6,18
37 0,7986 12,52 6,26
38 0,7880 12,69 6,35
39 0,7771 12,87 6,43
40 0,7660 13,05 6,53
41 0,7547 13,25 6,63

42 0,7431 13,46 6,73
43 0,7314 13,67 6,84
44 0,7193 13,90 6,95
45 0,7071 14,14 7,07

Source: USDA Forest Service. (n.d.). Slope correction table: Elliptical radii for various slopes and 1/100th & 1/50thacre plots. U.S. Department of Agriculture.
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A 1.2 Permanent  
one-hectare plots

Each 1-ha plot is divided into 100 10 x 10 m 
quadrats (Figure A2. a). Eventually, each 10 x 10 
quadrat could be further divided into four  
5 x 5 m sub-quadrats (to assess undergrowth). 

The 1-ha plot is permanently marked on the four 
corners (at a minimum) with aluminium or iron 
stakes (to resist fire when working in fire-prone 
vegetation like tree savannah). Record a GPS 
point for each corner. The 5,4,3 m technique 
could be applied to start the first corner at the 
proper right angle (Figure A2. b)

Each tree is mapped to the nearest centimetre 
in relation to the quadrat grid in the coordinate 
plane of the 1-ha plot (X0, Y0 to X100, Y100). The 
measured parameters of choice are the diameter 
at 1.3 m, the height of the tree, the height of the 
first branch, and crown projection (see Annex 2).
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4 m

x0, y100 X100, Y100

X0, Y0 X100, Y0

X0, Y0

X10, Y0
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5m

Figure A2. a) 1-ha plot divided into 100 10 x 10 m quadrats; 
b) The 5,4,3 m technique to ensure proper right angle when starting to lay 

the first quadrat

a
b
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Tree tagging is conducted, preferably with aluminium or zinc and 
galvanized steel or zinc nails. A line is painted at the point of measurement 
(PoM) following this procedure: first, an elastic band is put around the 
tree at 1.3 m above the ground. The diameter is measured adjacent to the 
bottom of the band. Then, a ring of paint is applied below the band  
(Photo A1). When remeasured after some years, the diameter measurement 
will be done at the upper part of the paint ring. 

In addition to recording diameter, height, and tree position, mapping the 
crown projection provides valuable ecological information, offering an 
alternative lens on dominance that goes beyond the conventional focus on 
diameter at breast height (DBH) (Figure A3). Incorporating crown height 
and projection enhances ecological interpretation by capturing structural 
complexity and can be linked to key parameters such as light transmission 
through the canopy, Leaf Area Index (LAI), and foliage stratification.

Figure A3. Tree position mapping (X,Y) and crown projection. Each tree is 
mapped to the nearest centimetre, relative to the 100 x 100 grid
Source: Laumonier 1997

Photo A1. A ring of paint is applied below an elastic band circling the 
trunk, after diameter measurement made also just below the band
Photo by Yves Laumonier
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A 2.1 Diameter at ‘Breast Height’ (DBH)
Diameter of trees is classically measured at 1.3 m above the 
ground, following some rules for the point of measurement 
(POM) as illustrated in Figure A4.

Figure A4. Diameter, point of measurement (PoM) for various tree base shapes
Source: Authors
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Appendix 2. Tree Measurements
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Figure A5. Tree height measurement
The most employed mathematical technique utilise the tangent of angles and the horizontal 
distance to measure tree height (Height (h) = d * (tan θup + tan θdown)) . In complicated 
situations in the field (leaning tree, poor crown shape), the Sine method (Bragg 2007) based on 
sine and slope is more accurate.

A 2.2 Tree height 
Both total height, and the height to the first branch, are 
commonly measured with a Haga altimeter or Blume-Leiss 
hypsometer (Figure A5). In more open environments such 
as woodlands, a laser rangefinder (paired with a clinometer 
or an integrated angle feature) provides better accuracy and 
ease. Increasingly, smartphone apps like Clinometer, Smart 
Measurement, or Arboreal Height (Android) and Tree Height 
Measurement (iOS) offer fairly accurate estimates in the field, 
especially when specialized tools are unavailable. Even a 
simple protractor can serve as an inexpensive clinometer 
(Figure A6). Still, it’s crucial that users have basic training in 
proper sighting techniques and angle/distance estimation, and 
that tools or apps are calibrated or checked periodically against 
a known reference to ensure the data’s accuracy.

Height
(h)

Horizontal distance (d)

 θup

 θdown
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Figure A6. A basic protractor as a cheap clinometer
A basic protractor plus straw and string can be used as an improvised clinometer for 
resource-limited settings.
Source: Authors
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A 2.3 Crown projection
Tree crown size and shape vary with environment, internal forest dynamics, 
and natural damage like tree falls, dying branches, and crown asymmetry. 
Ground measurements of tree crowns are challenging and time-consuming. 
The simplest way to measure crown radii involves bringing a measuring 
tape from the tree trunk to a person standing below the branch tips in four 
directions (North, South, East, and West). This method is quite basic and 
can be improved by using eight directions (N, NE, E, SE, S, SW, W, NW) 
or by having helpers follow the exact contour of the crown (Laumonier 
1997; see Figure 4). When financially possible, an excellent alternative is 
to use indirect measurement of light penetration through the canopy with 
hemispherical photography (Trichon et al. 1998; Gourlet-Fleury et al. 2001). 
Crown volume and shape can now be studied in much greater detail using 
Terrestrial Laser Scanning (TLS); (see Owen and Lines 2024 for a recent 
assessment). 

Figure A7. Tree crown projection measurement 
Source: Authors
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Table A2. Tree plot Excel template 

Line_
code

Plot/
Subplot

Tree 
Nb

X Y D Ht Hb CA N CA E CA S CA W Family Species Author Local.name Herb.ID

1 1_1 1 1,5 0,5 10,2 12,1 10,0 1,5 1 1 1 Sapotaceae Madhuca motleyana (de Vriese) 
J.F.Macbr.

JELATUN NL.1793

2 1_1 2 2 4 16 16,8 12,0 3 2 2,5 2,5 Anisophylleaceae Combretocarpus rotundatus (Miq.) Danser ENTAWAR RACUN NL.1794

3 1_1 3 1,5 5 21,6 20,6 14,0 3 3 3,5 3 Dipterocarpaceae Shorea balangeran Burck LOAN NL.1795

4 1_1 4 2 5,5 14,5 15,6 12,0 2,5 1 3 3 Sapotaceae Madhuca motleyana (de Vriese) 
J.F.Macbr.

NYATUK NL.1796

5 1_1 5 2 9,5 17,6 17,9 14,0 2,5 2,5 2,5 2,5 Anisophylleaceae Combretocarpus rotundatus (Miq.) Danser ENTAWAR KUNING NL.1797

6 1_1 6 6 9,5 21,4 20,5 16,0 2,5 3 1,5 1 Dipterocarpaceae Shorea balangeran Burck BADANG NL.1798

7 1_1 7 6 6,5 23,6 21,9 17,0 1,5 2 1,5 1,5 Penaeaceae Dactylocladus stenostachys Oliv. AMBUTUN MIANG NL.1799

8 1_1 8 5 6 14,5 15,6 14,0 1 1 0,5 1 Dipterocarpaceae Shorea balangeran Burck BADANG NL.1800

9 1_1 9 7 5 12,1 13,7 12,0 2 1 2 1 Celastraceae Lophopetalum beccarianum Pierre TIDAK TAHU 24 NL.1801

10 1_1 10 4,5 6,5 11,3 13,0 12,0 3,25 2,5 3 3 Clusiaceae Garcinia merguensis Wight BELANTIK ANAK NL.1802

11 1_1 11 5 2,5 22 20,9 15,0 2,75 3 2,25 3 Anisophylleaceae Combretocarpus rotundatus (Miq.) Danser AMBUTUN MIANG NL.1803

12 1_1 12 6 1,5 13 14,4 12,0 2,25 2 2 2 Celastraceae Lophopetalum beccarianum Pierre TIDAK TAHU 25 NL.1804

13 1_1 13 6,5 1 12,2 13,8 12,0 3 1,75 3 2,25 Fagaceae Lithocarpus pseudokunstleri A.Camus AMBUTUN MIANG NL.1805

14 1_1 14 7 2,5 14,5 15,6 13,0 1,5 1,5 2,25 6 Anisophylleaceae Combretocarpus rotundatus (Miq.) Danser BADANG LOAN NL.1806

15 1_1 15 3,5 1 10,9 12,7 12,0 1,5 1,5 1,75 1,5 Sapotaceae Madhuca motleyana (de Vriese) 
J.F.Macbr.

JELATUN NL.1807

16 1_1 16 8,5 7,5 14,2 15,4 11,0 11 10 12 10 Dipterocarpaceae Shorea balangeran Burck TIDAK TAHU 26 NL.1808

17 1_1 17 8 7 12,6 14,1 10,0 2 2 3 3 Anacardiaceae Mangifera swintonioides Kosterm. RENGAS NL.1809

18 1_1 18 7,5 7 12,3 13,9 12,0 3,5 2,5 3 2,5 Celastraceae Lophopetalum beccarianum Pierre KAYU LOLUE NL.1810

19 1_1 19 1 10 13,5 14,8 11,0 2,75 1 1 3,25 Penaeaceae Dactylocladus stenostachys Oliv. AMBUTUN MIANG NL.1811

20 1_1 20 1 9,5 15,5 16,4 12,0 3 4,25 3 2,75 Anacardiaceae Mangifera swintonioides Kosterm. RENGAS NL.1812

21 1_1 21 1,5 8 18,5 18,6 13,0 2,5 3 2 3 Dipterocarpaceae Shorea balangeran Burck BADANG NL.1813
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A 3.1 Community sketch mapping

The facilitator team (usually two to three or four persons, including a GIS 
knowledgeable person) divides the villagers into two, three, or more groups 
depending on the number of participants, with one facilitator per group. 
Groups are based on gender and age (minimum two groups: men’s and 
women’s; or, three groups if adding a youth group).

For each working group:

Ask each group to start by drawing the village resource map: first, put in 
the locations, such as villages, abandoned villages, graveyards, sacred 
sites, and restricted access areas. Continue with the location/area of forest 
products, land types, and soil categories. Re-check the toponymy and 
common understanding of the base map features. At that stage, some 
triangulating of local toponymy with satellite images or GPS points can be 
performed during field tour with some members. 

Discuss what should be mapped (e.g. land-use categories and non-
timber forest product sites, hunting sites, sacred sites) before starting the 
sketch mapping process. Following the previous discussions, encourage 
participants to list and name:

•	 different types of land and landscape elements (land units)
•	 different types of land uses
•	 types of natural resources
•	 types of soil or drainage (e.g. swamp, wetland areas)
•	 special features, natural and anthropogenic, such as sacred groves, 

damaged woodland, waterfalls, graveyards, termitaria.

At that stage, symbols for the map legend should be designed. Each land 
use type is then sketched as accurately as possible onto the base map. The 
legend is completed, with a symbol given for each land use category and 
other important features.

The facilitator team then compiles all maps drawn during the community 
meeting into one or more ‘master maps’. These maps can be updated and 
corrected each day. The final maps drawn during the community meetings 
are returned to the village before the team leaves for the next location.

Final maps should be completed with the following elements: map title 
indicating location; legend showing all map symbols; arrow at the top 
showing North; scale and scale bar. 

These maps are displayed at a public place in the village for everyone to see 
and comment on. Encourage people to add specific features if they wish to.

Photo A2. Discussing sketch resource map of a village landscape in  
southern Zambia 
Photos by Yves Laumonier/CIFOR-ICRAF

Appendix 3. Sketch and Drone Mapping Procedures
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Photo A3. Villagers sketching resource maps in West Papua, Indonesia 
Photos by Manuel Boissiére/CIFOR-ICRAF
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A 3.2 Drone mission and mapping

Do not fly drones without first obtaining community permission. All 
neighbouring villagers must also be informed. Obtain informed consent 
from all villagers during or before a general meeting that should include 
all villagers to explain the drone tool (see main text, section 2.1.1 and Box 
10 describing responsibilities under FPIC). At the same time be aware of 
flight permissions usually needed to be obtained from national civil aviation 
authorities, especially in protected or sensitive border zones.

Questions to be covered for the initial use of drone: 

•	 Where can the drone take off? 
•	 Are the lands that will be flown over individually or collectively owned? 
•	 Who are the owners? 
•	 Might someone feel offended by drones, given the kind of activities they 

carry out? 
•	 Could using drones trigger aggressive or violent responses from 

someone? 

Drone mission planning software includes, among others, Mission Planner 
(https://ardupilot.org/planner/index.html), DroneLink (https://www.dronelink.
com), and DJIFlightPlanner (https://www.djiflightplanner.com). Planning can 
include, for example, pre-set fly line patterns. 

Fly missions apps (Drone Deploy, Dronelink, MapMadeEasy, Map Pilot, etc.). 

The flying heights range from 120 m to 350 m above ground, depending on 
topographic conditions and country regulations for using aerial space with 
drones. Image acquisition should be set up with a front overlap of 75-85% 
and a side overlap of 70-75%, following a plan of back-and-forth flight lines 
and the camera pointing straight down (nadir).

image width

image
height

side
overlap

frontal
overlap

Area of interest

Figure A8. Lawn-mower flight plan, the drone flying back and forth in 
parallel lines to ensure complete coverage of the area. 
Source: https://www.aerotas.com/overlap-flight-pattern

https://ardupilot.org/planner/index.html
https://www.dronelink.com
https://www.dronelink.com
https://www.djiflightplanner.com
https://www.aerotas.com/overlap-flight-pattern
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Capturing additional oblique photos (North, East, 
South, West) of the landscape at the centre of the 
surveyed area is recommended; this will help when 
discussing landscape features with communities.

Back at the office, perform photo mosaicking using 
AGISOFT METASHAPE, Pix4D, or MapMadeEasy; and 
later return to the village to show the photomosaic 
result. Three printed copies of the final photomosaic 
should be produced for the village, local authorities, 
and project archives. The GIS facilitator , who is 
part of the team, can overlay the grid system using 
degrees or UTM, map references, drone acquisition 
day, drone type, flying altitude, etc. 

A 3.3 Final maps (men and women)
Figures of final results are on Photo A3. Figure A9 
shows drone photomosaic and final vegetation map.

Verification by signature

After re-drawing the final map, all village assembly 
participants should sign the map to turn it into 
a legal document. Finally, the community should 
discuss how the village maps are to be communicated 
with outside agents. This crucial map verification 
via village assembly and signature serves as a key 
FPIC step and participatory validation.

Figure A9. Orthophoto mosaic and interpretation of the vegetation of a village territory 
in Borneo
Source: Authors
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A 4.1 Timeline 
Data sheet 1

Data Sheet 1: SETTLEMENT HISTORY, TIMELINE 

Village Head/Traditional Leader 

Respondent Date day/month/year Inputted by

Village Checked by

Checked by Original or Copied? O C File name

Written on back Y N This is page 1 of 1 Backups? File copied?

Name Gender M F

Age Ethnic group

Questions: Please tell us about the history of this village! If the village was moved from (an) earlier location(s), what was the reason to move and what was 
done with the old/abandoned settlement? Causes of abandonment (e.g., conflict, water shortage, soil fertility decline).

2000 2020

2011

Appendix 4. Semi-structured interviews, 
Pebble Distribution Method (PDM) 
Scoring Exercises and Free Listing
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A 4.2 Land units and vegetation types 
Data sheet 2

Data Sheet 2: LAND UNITS 

Village head/Traditional leader/Informant 

Participants Group Date day/month/year Inputted by

Village (Language) Checked by Checked by

Facilitator Original or Copied? O C File name

Written on back Y N This is page 1 of 1 Backups? File copied?

Questions: Please tell us what land units and vegetation types can be found in the village area and where good examples of each are located! (Below is an 
example of a dry tropical woodland landscape.)

No Land and vegetation types Location of example  
(Name of place or river) No Land and vegetation types  

(Local name)
Location of example  
(Name of place or river)

Woodland

Gallery forest (riparian)

Savannah

Shrub/thicket

Grassland

Food crop fields

Water

Secondary woodland

Fallow

Home garden

Shea parks
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A 4.3 Forest/woodland products
Data sheet 3

Data Sheet 3: FOREST/WOODLAND PRODUCTS 

Village head/Traditional leader/Informant 

Participants Group Date day/month/year Inputted by

Village (Language) Checked by Checked by

Facilitator Original or Copied? O C File name

Written on back Y N This is page 1 of 1 Backups? File copied?

Questions: Please tell us about forest products you know (local names), and the location(s) where they are collected!

No Woodland products 
(Local name)

Location  
(Name of place and river)

No Woodland products 
(Local name)

Location  
(Name of place and river)
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A 4.4 Scoring exercises (FGD-PDM) 
Data sheet 4

Data Sheet 4: SCORING EXERCISE for LANDSCAPE UNITS/VEGETATION TYPES and USED CATEGORIES 

 Key Informants-FGD/PDM 

Respondent Date day/month/year Inputted by

Village Writer Checked by

Checked by Interviewer File name

Written on 
back

Y N This is page 1 of 1 Original or Copied? O C Backups? File copied?

Instructions:

1.	 Among the following land units on these cards (taken from Data sheet 2), which one do you think is the most important? Please distribute 100 pebbles 
among the cards to express the importance!

2.	 For each use category (food, medicines, for example) on the cards, which type of land unit is the most important? Please distribute 100 pebbles among 
the cards based on the importance of this use category!

3.	 Then, build a matrix with results from Data Sheets 2 and 3. Below is an Indonesian example to be adjusted for local context and local land  
unit classification.
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Village

Home Garden

River

Swamp/wetland

Field crop

Young fallow

Old fallow

Forest/woodland

Total per use category=100

Natural forest/woodland

Logged-over forest/woodland

Old Secondary forest

Swamp forest

Limestone forest

Total per use category=100

Example taken from an Indonesian 
site.

Matrix built based on the results of Data Sheets 2 
and 3, to adapt for local context, country site.
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A 4.5 PDM Past-present-future importance of used categories
Data sheet 5

Data Sheet 5: PDM PAST-PRESENT-FUTURE 

 Key Informants-FGD/PDM 

Respondent Date day/month/year Inputted by

Village Writer Checked by

Checked by Interviewer File name

Written on back Y N This is page 1 of 1 Original or Copied? O C Backups? File copied?

Instructions:
1.	 How important were/are/will be forest uses and values 30 years ago, at present, and in 20 years from now? Please distribute 100 pebbles among the 

cards based on the total importance of the forest at a particular time!
2.	 How important were/are/will be forest uses and values 30 years ago, at present, and in 20 years from now, per use category? Please distribute 100 

pebbles among the cards, first for ’30 years ago’, then for ‘present’, and lastly for ’20 years from now’! 

30 years ago Present 20 years from now Total =100
Total importance
Food
Medicine
Light construction
Heavy construction
Charcoal
Tools
Firewood
Basketry
Ornament/tradition/ritual
Marketable products
Hunting function
Hunting place
Recreation
Total per time=100
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A 4.6 Free listing

The facilitator asks individuals to name as many species as each person 
can, for each category – for instance, plants, birds, and other animals (this is 
done to avoid explaining how to differentiate mammals, reptiles, amphibians, 
etc.). Within each category, successive free listings can be set up. For 
instance, for plants, name those that are most salient for food, medicine, 
firewood, etc. 

•	 People are asked to “name all the birds you can think of”.
•	 Then they are asked the same for plants “All the plants you can  

think of”.
•	 This is a very broad starter... so the next step can be to do the same 

while focusing on narrowing the domain “all the birds you can think 
of in the forest” or ‘all the medicinal plants you can think of in the 
forest’. This is called ‘successive free listing’.

•	 It can go to specific use “all the plants used for basketry” “all the trees 
used as timber” etc. (based on the scoring exercise previously).

•	 The free list, written on paper or orally, will contain items that one 
individual knows in the order that they come to his/her mind. It can 
also be recorded on tape.

•	 Minimum 15 to 20 respondents randomly chosen in the village (e.g. five 
young men, five old men; five young women and five old women).

•	 There is no pressure: the person might have difficulties mentioning 
objects/items; people need time to think about naming various items. 
The interviewer can, at the end, slowly reread the list and ask if the 
person can think about more items.

•	 Avoid influence by other persons on the freelister, e.g. approaching out 
of curiosity and offering suggestions.

•	 For the plant list, samples should preferably be collected after the 
interview, together with the person interviewed, for  
proper identification.

Photo A4. Participants in scoring exercise
Photos by Nining Liswanti/CIFOR-ICRAF 

Scoring exercise, PDM

Typical PDM exercise for four groups of 10 people in Indonesia Borneo: 
young men, young women (< 35 years old), old men, old women  
(≥ 35 years old) distributing pebbles indicating their perceptions of the 
importance of land units, use categories per land units and past, present, 
future of these categories.
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•	 The form data will be inputted as .csv format and will be analysed with FLARES. http://www.anthrocogs.com/shiny/flares/
•	 Salience analysis (or Smith’s S index) accounts for frequency of mentions, weighted for list position.

For each use category, the most salient and least salient species will be identified for both men and women. The form to fill out is very simple and in Excel 
format.

Figure A10. Recommended format in Excel to be used with the FLARES 
software; bird species free listing as an example
Source: Authors

Figure A11. FLARES Smith’s Salience Index chart example
The Smith’s Salience Index combines both how often a species is mentioned and its position 
in free lists, showing how broadly shared and easily recalled a species is among respondents. 
Higher values indicate greater cultural salience, meaning that these birds (the Brown-throated 
Sunbird and the Red-Eyed Bulbul in this case) are part of a culturally ‘core’ group of species. 
Simultaneously, breaks in the curve signal shifts to less recognized or more peripheral species. 
Cultural salience should be viewed as a measure of shared importance and visibility in people’s 
knowledge and practices, rather than as a direct indicator of ecological abundance.
Source: Authors

Freelister_1 Freelister_2 Freelister_3

Ostriches Flamingo Grebes

Guineafowl Turaco Nightjar

Flamingo Coucal Francolin

Sandgrouse Grebes Flamingo

Crake Cuckoo Moorhen

Pheasants Nightjar Plover

Francolin Spinetail

Lapwing Flufftal

Crake

Lapwing

Guineafowl

Moorhen



The Center for International Forestry Research and World Agroforestry (CIFOR-ICRAF) 
harnesses the power of trees, forests and agroforestry landscapes to address the most 
pressing global challenges of our time – biodiversity loss, climate change, food security, 
livelihoods and inequity. CIFOR and ICRAF are CGIAR Research Centers.

cifor-icraf.org

http://www.cifor-icraf.org
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