

Restoration of rangeland carbon sinks for increased community resilience and agricultural outcomes and Towards Ending Drought Emergencies (TWENDE)

Rangeland health data use Workshop Kimana, Kajiado, Kenya 24-25 March 2025

WORKSHOP REPORT

APRIL 2025

Table of Contents

ACR	RONYMS	2
1.	BACKGROUND AND INTRODUCTION	3
2.	THE WORKSHOP	5
4.	INTRODUCTIONS AND WORKSHOP EXPECTATIONS	6
	INTRODUCTION TO RANGELAND HEALTH MONITORING USING THE LDSF AND THE IMPORTAND DATA IN RANGELAND RESTORATION	
6.	INTRODUCTION FROM AET	.13
7.	RESTORATION INTERVENTIONS BY OTHER STAKEHOLDERS	.13
9.	FEEDBACK SESSION ON THE DATA WALL	.17
10.	GROUP WORK SESSION: USE CASES FOR RANGELAND HEALTH DATA	.23
	FIELD VISIT AND CAPACITY BUILDING ON THE USE OF REGREENING APP FOR MONITORING	20

Acronyms

AET - Amboseli Ecosystem Trust

CI – Conservation International

FMNR – Farmer Managed Natural Regeneration

ICRAF – International Centre for Research in Agroforestry

IUCN – International Union for Conservation of Nature

JDI - Justdiggit

LDSF - Land Degradation Surveillance Framework

MOA-SDL – Ministry of Agriculture State Department of Livestock

TWENDE – Towards Ending Drought Emergencies

1. Background and Introduction

Restoring rangelands is essential for improving community resilience and agricultural productivity, particularly in the face of climate change. Rangelands support biodiversity, livestock, and livelihoods, while also having significant carbon sequestration potential. When degraded by overgrazing, deforestation, or poor land management, their ability to provide critical ecosystem services is reduced. However, targeted restoration efforts, such as replanting native vegetation and implementing sustainable grazing practices, can enhance carbon sequestration. These restoration efforts improve soil fertility, water retention, and biodiversity, helping agricultural systems cope with climate challenges like droughts and floods. They also boost livestock productivity, stabilize food sources, and create economic opportunities. By promoting a balance between agriculture and environmental health, restoration ensures long-term sustainability and climate resilience.

Many rangeland restoration projects aim to create a strong evidence base for sustainable management practices. The Rangelands Restoration project, for example, aims to provide a robust evidence base for sustainable management of rangeland health, informing management and monitoring by making this evidence available through user-friendly tools and platforms. Another example is the Towards Ending Drought Emergencies (TWENDE) project which seeks to reduce the economic impact of climate change-induced droughts in Kenya by increasing the resilience of the livestock and land-use sectors in restored rangeland ecosystems.

Effective restoration relies on data from systems like LDSF, which measure biophysical indicators. The Land Degradation Surveillance Framework (LDSF) is a systematic monitoring framework to assess soil and rangeland health, land degradation and vegetation diversity. It is based on a stratified random sampling design which allows for the assessment of soil and land health including rangeland health at multiple scales.

Figure 1: Multiple spatial scales with the LDSF (left) and the indicators monitored (Right). Read more on the LDSF here

In the Chyulu Landscape, data was collected from 18 clusters randomized across 4 conservancies in the Amboseli Ecosystem as part of the Rangelands Restoration project and from 16 clusters in Mbirikani as part of the Twende Project.

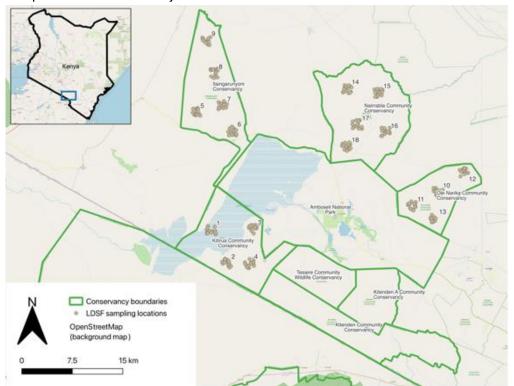


Figure 2: Amboseli LDSF sampling clusters. Each cluster is 2.5km by 2.5km with 10 sampling plots each $1000m^2$ randomised within each cluster.

Figure 3: The three Twende LDSF sites (Laisamis, Mbalambala and Mbirikani). Each LDSF site is 10km by 10 km with 16 clusters randomized in each site.

2. The Workshop

The workshop, held on 24-25 March in Kimana, Kajiado County aimed to achieve several key objectives:

- Share rangeland health data collected using the LDSF in the Amboseli and Chyulu Landscape.
- Build capacity on interpreting and using rangeland health data.
- Understand use cases for rangeland health data and current data needs within the Amboseli Landscape.
- Enhance capacity in using the Regreening App to monitor rangeland restoration activities.

3. Workshop Opening remarks

Daniel Kaka from the Amboseli Ecosystem Trust (AET) provided the opening remarks for the workshop. In his opening remarks, Daniel thanked the partners and ICRAF for organizing the workshop. He acknowledged the restoration efforts made by various stakeholders and emphasized that for pastoralists, "grass is not just grass" — its type, quality, and availability are crucial. He noted the coexistence of livestock and wildlife in the Amboseli ecosystem, which is vital for the Maa community's survival. He also highlighted the importance of selective grazing to prevent rangeland degradation and promote coexistence, urging stakeholders to unify their restoration efforts and make carbon knowledge accessible to the local community.

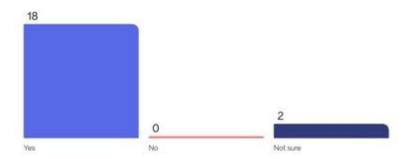
Figure 4: Daniel Kaka from the Amboseli Ecosystem Trust (AET) gives the opening remarks.

In his remarks, Henry Parkolwa, TWENDE project coordinator at NDMA discussed the impacts of climate change, including increased human-wildlife conflict and the emergence of zoonotic diseases due to reduced pasture availability. He encouraged stakeholders to adopt natural regeneration practices to restore rangeland health. He provided an overview of the TWENDE project

Figure 5: Henry Parkolwa, NDMA gives additional remarks and the overview of TWENDE project

4. Introductions and workshop expectations

Christine Magaju of ICRAF led the workshop participants through the introductions as well as a menti poll on participant's expectations. Participants, through the menti poll, recorded what they were looking forward to the most from the workshop, whether their organizations implemented rangeland restoration, types of restoration interventions and whether they monitor rangeland among others.

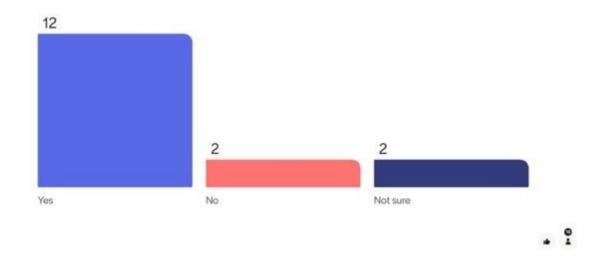

Below are some responses

What are you looking forward to the most from this workshop (your expectation)

Enhance my knowledge on potential data sources	To learn more	To share experiences and learn how to use LDSF data for decision-making.	Using data to promote and monitor rangeland health
Get insights on the findings of the data collected Interactions and Learning	To understand the use case needs for Chyulu and Amboselu	To learn how citizens science can be used in collection rangeland health data	To learn
Feedback and future data utilization plan	Hear about the exciting work within the landscapes.	How to measure rangeland health and productivity	Sharing data, discussing results, and brainstorming ideas
To learn more about rangeland health monitoring	Different types of data and how to present and interprete them	Learning what kind of data partners are interested in	How best data can be shared
learn more on rangelands restoration	Understand how the collected data informs future restoration initiatives interact with the regreening App.	Interactive session	

N Montimeter

Do you/your organisation implement rangeland restoration?

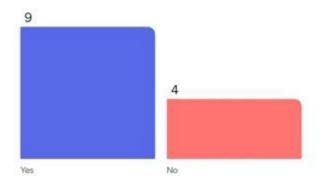


. :

What rangeland restoration activities do you implement?

Restoring degraded Soil erosion and soil Carbon projects Ecosystem health organic carbon including REDD+ rangeland, digging of bands, seedbanks, capacitating locals communities on rotational grassing support communities in Seed banks, bands. FMNR reseeding soil Use of semi circular soil controlled grazing bunds to restore digging of trenches and water conservation. degraded rangelands tree planting Rangeland Restoration -Bunds Grass Seedbank Rangeland Restoration -Research on restoring degraded rangelands using Research on restoring degraded rangelands using Conservancy Tree growing native tree species and other native tree species and other vegetation. Agroforestry in vegetation. Agraforestry in ASALs - Promoting tree ASALs - Promoting tree planting and sustainable land planting and sustainable land use in arid and use in arid and grass reseeding at farm level Technical interventions: Research on restoration with individual farmers in Water buns, trenches. initiatives prosopis cleared plots in grazing management and Baringo County and scale up in grass seeedbanks for Arid Counties using local grass women species that are adaptable to LDSF Soul bunds Grazing Semi circular soil bunds. Semi circular soil bunds. management through olopololi and enkaroni Grass grass seed banks grass seed banks seed banks Trenches Stone lines Vellelari Digging of Water bunds Reseeding halfmoons, seeding Reseeding Water retention trenches Grass seed banks Planting tree Pasture management Forest restoration Grazing management Rangeland ecosystem Community Water burs, trenches, grass seeedbanks, vellerani engagement and activities health assessment improve livelihoods Rangeland health Gross seed bork Land degradation Construction of half moons and Grass seed bank establishment construction

Do you / your organization monitor rangeland health?

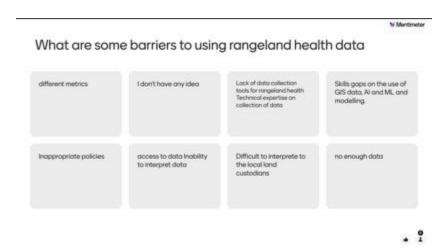


What types of data do you/ collect when monitoring?

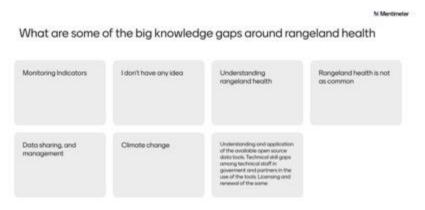
Vegetation cover	Forestry and tree data	SOC Species diversity Species abundance Land use history	Vegetation condition using VCI/NDVI
Vegetation cover Grass species Rangeland health Grazing committee performance	Qualitative and quantitative	SOC, grass forb and tree diversity	Vegetation data
Soil health and vegetation data	Vegetation species, plot sizes, uses etc	carbon stocks for both above and below ground biomass	n/a

M Mentimeter

Do you or your organisation share data?


. 9

M Mentimeter


Participants also recorded the various ways in which they use rangeland health data and the barriers to using the data.

How do you use the rangeland health data?

. 5

Participants also identified the knowledge gaps around rangeland health data and their wish list for rangeland health

Wish list for rangeland health data

5. Introduction to rangeland health monitoring using the LDSF and the importance of data in rangeland restoration

Leigh Winowiecki of ICRAF presented the Land Degradation Surveillance Framework (LDSF), a systematic methodology for assessing soil health, rangeland health, land degradation, and vegetation diversity. She shared results of the rangeland health assessments conducted across the four conservancies in the Amboseli ecosystem as part of the Rangelands Restoration Project. Leigh highlighted data gaps in grasslands, rangelands, and savannahs in Africa and emphasized how LDSF provides baseline data for rangeland health. She also noted the involvement of local women who were trained on using the framework.

Figure 6: Leigh Winowiecki, ICRAF, presents the LDSF and the results of the rangeland health assessments conducted across four conservancies in the Amboseli ecosystem.

She explained that grasslands are important carbon sinks, storing significant amounts of carbon below ground, and that the degradation of rangelands has made Africa more vulnerable to climate change. The data collected can guide decisions on rangeland restoration and health monitoring. The Amboseli ecosystem contains 45 perennial and 25 annual grass species, each with varying soil type preferences. She identified grazing pressure as a key cause of degradation and suggested that such data could be used for site matching in restoration efforts, such as reseeding. The presentation can be accessed here.

6. Introduction from AET

Kenneth Sokoine of Amboseli Ecosystem Trust (AET) provided an overview of AET's rangeland restoration project, highlighting several success stories. AET is a community-led conservation organization that supports traditional pastoral systems for livestock and wildlife. The organization manages 1.3 million acres of conservancy and rangelands, with 35 member conservancies. They have implemented technical restoration interventions such as bunds, trenches, and valerian, with locals digging the bunds for a small fee. While the bunds are monitored, they have not been documented, and the Regreening App was identified as a useful tool for this purpose.

 $\textit{Figure 7: Kenneth Sokoine, AET, provides an overview of the organization's rangeland \textit{ restoration peoject.}}\\$

AET's restoration goals align with the national target of planting 15 billion trees. The community, especially women, has been empowered to take a leading role in the restoration work. Success stories include women's involvement in seedbanks, where they have started earning income from selling seeds and hay. This has allowed them to invest in livestock, a traditionally male-dominated activity, and is contributing to a shift in gender norms within the community. The presentation can be accessed here.

7. Restoration interventions by other stakeholders

a. Soil for Africa

Soil for Africa is promoting sustainable land management by encouraging rapid rotational grazing and training grazing committees to revisit traditional, sustainable grazing methods.

b. Big Life Foundation

Big Life offers conservation education to local communities and organizes annual Maasai Olympics to engage morans, discouraging them from harming lions as part of their traditional rites of passage.

c. Wildlife Research Training Institute

Wildlife Research Training Institute oversees wildlife research across the country, focusing on invasive species, land degradation, seedbanks, and natural regeneration.

8. Interactive data wall on Rangeland health data

This session focused on sharing the rangeland health data generated from the LDSF surveys in the Amboseli ecosystem. Participants were invited to interact with data available on the physical data wall and encouraged to interrogate the meaning, implications and relevance of the data.

Figure 8: Leigh Winowiecki, ICRAF presents the LDSF during the interactive data wall. She also presented the grass species diversity data generated from the rangeland health module in the LDSF.

Figure 9: Robin Chacha, ICRAF presents the land cover maps (tree cover and grassland cover distribution) generated from the LDSF surveys in the Amboseli ecosystem.

The State Department of Livestock (SDL) is carrying out restoration interventions in the Chyulu landscape, including Pastoralist Field Schools that teach grass bulking with species *like Eragrostis superba* and *Cenchrus ciliaris*. Mature grass is harvested and sold by the community.

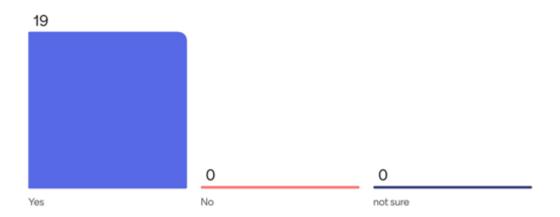
Figure 10: Petronila Wanjugu, SDL, presents the restoration interventions implemented in the Cyulu landscape as part of the TWENDE project.

Benard Onkware, ICRAF presented the Regreening App. The Regreening App, developed by ICRAF, helps collect and monitor restoration data, including details about rangeland plots, practices, species present, and erosion status.

Figure 11: Benard Onkware, ICRAF, presents the Regreening App.

Tor Vagen, ICRAF presented LDSF outputs in the form of soil organic carbon (SOC) and erosion maps. These maps revealed an inverse relationship between SOC and erosion, showing how increased erosion leads to decreased SOC. The data allows for predictions on future erosion trends, improving decision-making for rangeland restoration.

Figure 12: Tor Vagen, ICRAF, presents the soil erosion and soil pH maps generated from the land health data collected during the LDSF surveys in Amboseli and Mbirikani.


All the data presented during the interactive data wall session can be accessed here.

9. Feedback session on the data wall

The interactive data wall was followed by a feedback session on what the participants liked about the data wall, conclusions that can be derived from the data presented and the actions that can be informed by the data among others.

Mentimeter

Did you enjoy engaging with the data wall?

. .

What did you like?

Interactive	The regreening app	Pictorial explanation
There were some really useful insights from participants looking at the maps	The data products	The visual presentation of data
Everything, starting from the regreening applivestock department, the LSDF type of grosses and also degradation have really learnt alot.	illied all the stations, the work done by Regreening App, the apportunities to collaborate with Jazo Mit and what this means to notional programs tile The 15 Billion Instational Updating FRI,	Арр
The way the data is presented, easy to read	The maps, presenters, the pictures	Got me curious to go do some research on grass: Grass is not just grass
The richness of knowledge	Everything	Regreening app
Twende	Interactive	I have learn a lot rangeland health data
	There were some really useful insights from participants looking at the maps Everything, starting from the regreering applications department, the LSDE type of gasses and as a degradation have really learns alot. The way the data is presented, easy to read. The richness of knowledge.	The data products The data products Everything storting from the regreening applications department, the LSDE type of grasses and also degradation have really learnet aix. The way the data is presented, easy to read. The richness of knowledge. The richness of knowledge.

What can we do better?

Increase time abit	Well so far More time on the technical stuff	N/A	Provide ple chats
Show historical status	More time for discussion	All was amazing	Create more time for the session
Impiants data into actionable policies	More time for discussion	The application mechanisim and interpretation of result	Add interactive sessions where you can share the process of data collection, analysis, and presentation
Maybe simplify the data for the local communities, example names of the grass species	Big posters	Break it down further for more easier understanding.	Integrating LDSF with other restoration intervention

What conclusions can we derive from the data?

We can do a lot with good data	Degradation trends	Correlation between different variables	We need to collaborate in restoration efforts
SOC Species abundance and distribution Degradation	Data is everything	Good for policy and decision making	Data is importand but more crucial when its shared
That different species do better in differently and there is need to increase variety for healthier soils and increase biodiversity	The actions (are clear) needed to restore the respective rangelands based on the results from the assessments	There is a lot of knowledge that stakeholders are missing to guide their work	Data is important
Insights	Data drives better informed decision making	It helps in carbon identification in the Ecosystem	Data is informative.

What key actions can we take in the landscape based on the data?

Systematic monitoring	Areas for intevention	Improve projects	get data for landscapes
Work more together with the communities in target areas	Improve restoration activities in rangeland	Reseeding Irrigation	Consult data for any decision making
Encourage natural regeneration	Work together and have more variety	Form a community of practice for data sharing	Start finding ways of making seeds available
Collaboration	More landscape level coordinated approach to restoration	Evidence based	It helps restoration strength

What are some new ideas or thoughts you have after engaging with the data wall?

Extrapolating data for our project area	see if we can get data for the area	I have learn more about database	Data is key for restoration interventions
Genetic Diversity is very important	How to use data in decision- making and how to merge this with indigenous knowledge	Community engagements	We need more native grass seeds for restoration
Time trends	Periodic updates	Share data in the community	Include pie charts in data visualisations

After looking at the data what are some ideas you have for bringing these data to pastoralists? Policy makers? The wider community?

Breaking it down to be consumed by non-I don't have a ideas Protection Vs Improved data sustainable use collection scientists Having regular meetings with the pastoral Through workshops and Sustainability of Sharing the processed pictorials livelihood data back to communities stakeholders to share Converging them at a Converging them central point to share regularyly to give the information updates

10. Group Work Session: Use cases for rangeland health data

This session focused on the use cases for rangeland health data, challenges and opportunities with regards to sharing, accessing and using these data.

Table 1: Use cases and data types for rangeland health

Use case for	Who uses it	Type of data used or needed	Status of the data:
rangeland		for the use case	Already being used/
health data			needed
Restoration	SDL, CI, JDI,	Erosion	Data is already being used
	MWCT, BL,		but more data is needed
	CIFOR ICRAF,	Soil (SOC, texture, type)	Data is already being used
	KEFRI		but more data is needed
		Vegetation	Data is already being used
Grazing	SDL, AET,	Vegetation /grass species	Data is already being used
/pasture	NDMA,	availability and suitability	but more data is needed
management	Communities	Land size, rapid rotation	Data is already being used
		grazing, Olopololi/ Enkaroni	
		model, grazing management	
		plan and committees, thump's	
		rule	
		Available interventions	
		Animal biodiversity	Data is needed
		Degradation	Data is needed
		Water resources	Data is already being used
			but more data is needed
		Land carrying capacity	Data is needed
Conservation	MWCT, BL, CI,	Vegetation cover	Data is already being used
	JDI	Biodiversity	Data is needed
		Degradation	Data is needed
		Water resources	Data is already being used
			but more data is needed
		Land carrying capacity	Needed
Livestock		Carrying capacity	Data is already being used
production	SDL	Livestock Breed suitability	Data is already being used

		Vegetation cover	Data is already being used
			but more data is needed
Land use	JDI, MWCT,	Soil organic carbon (SOC)	Data is already being used
planning	NDMA		but more data is needed
		Bulk density	Data is already being used
			but more data is needed
		Plant biomass	Data is already being used
			but more data is needed
Carbon credits	MWCT, BL,	Soil carbon	
	KWS,KFS	Carbon stock	
Biodiversity	Redd+, AET	Species density and diversity	Data is needed
credits		Habitat density	Data is needed
Disaster	BIG LIFE, AET,	Fire outbreaks	Data is already being used
management	ACP		but more data is needed
Rangeland	AET, ACP	Vegetation cover,	Data is already being used
productivity		species density and diversity	but more data is needed
Cost of	BIG LIFE, AET,	Policy strengthening and	Data is needed
restoration	ICRAF, SDL,	development	
	NDMA		
Weather	AET,	Rainfall density and	Data is already being used
pattern change	NDMA,SDL,ACP	distribution, seasons	but more data is needed
Community	AET, SDL, ICRAF,	Socioeconomic (grass seed	Data is already being used
livelihoods	ACP	sales), cash flow	but more data is needed
	AET, BIG LIFE,	Tree survival rates, species	Data is already being used
Tree planting	NDMA, ACP,	grown, soil bunds, trenches,	but more data is needed
		stone lines	
Biodiversity	AET, ACP, BIG	Vegetation cover	Data is already being used
restoration	LIFE,WRTI		but more data is needed
		Species density and diversity	Data is already being used
			but more data is needed

Figure 13: Group report back on the use cases for rangeland health data and the type of data used or needed for each.

Challenges to using rangeland health data and proposed solutions

Table 2: Challenges to using rangeland health and the proposed solutions.

Challenges to using rangeland health data	Proposed solution
Data access	Develop data sharing MoUs and agreements
Inadequate technical skills in data handling,	Building more partnerships and capacity to
processing and interpreting	the stakeholders
Cost data, collection, process and dissemination	Leverage on stakeholders capital and human
	capital, amendments on data policy
Lack of centralized data repository	Creation of a centralized data hub, an online
	data sharing hub, develop a county/national
	resource center with a digital library
Coordination of stakeholders- not ready to share	Develop data sharing MoUs and agreements
data freely	
Data storage and management	Develop data sharing MoUs and agreements
Data credibility/misuse/Breaching	Develop data sharing MoUs and agreements
Limited knowledge on the data protection and	Building capacity on data policy
handling policy	

Low quality data	Harmonization on the data collection and
	analysis procedures(protocols)
Static data	Need to regularly update the data
Policy gaps	Policy strengthening and developments
Vastness of the landscape for monitoring	Partnerships with stakeholders working
	within the landscape

Figure 14:Group report back on the challenges/barriers to using rangeland health data.

Opportunities for improving the use of rangeland health data

Table 3: Opportunities for improving the use of rangeland health data

Opportunities for improving rangeland data use and sharing

- Stakeholder engagements in resource mobilization
- Use of the existing policy frameworks on data
- Artificial Intelligence, Machine Learning and Modelling
- Community and political goodwill
- Stakeholders goodwill to share data open/free source data

- Embracing new technologies
- Data collection tools such as LDSF and Regreening App

Decisions that can be improved with rangeland health data

Decisions /conclusions/key actions/derived from the use of data

- Informs the type of intervention to employ on a given area
- Data informs the policy decisions- that is the NDMA bylaws used currently, dry season grazing implementation matrix
- Best suited stakeholders to engage on a given project/intervention
- Determination of the carrying capacity and restocking of a given ecosystem
- Decision on when to open a specific areas for use
- Gives the trend of the status of a specific rangeland ecosystem- by getting the intervention alerts
- Helps get the impacts of a given intervention that's later cascaded to other areas
- Help in making decisions on prioritizing resource allocation

11. Field visit and capacity building on the use of Regreening App for monitoring rangeland restoration

The field visit aimed to observe ongoing rangeland restoration initiatives in the Amboseli Ecosystem and provide hands-on training on using the Regreening App for monitoring restoration efforts.

Figure 15: Participants during the field trip to Kitilome Conservancy in Kimana.

Grass Bunds and Terraces – Kitilome, Aloca Conservancy: This restoration project, funded by WWF-Kenya, Justdiggit, WWF-Germany, and Big Life, is implemented by AET. It involves creating 6-meter diameter half-moon grass bunds to aid pasture production. These bunds are protected with sticks and thorny branches until stable, with rotational grazing planned to fertilize the soil naturally. Terraces, such as fanya juu and fanya chini, are also built to combat soil erosion, improve water retention, and reduce runoff.

Figure 16: Ernest Lenkoina of Big Life Foundation gives the overview of the restoration project in Kitilome Conservancy.

Two restoration sites were visited: one reseeded in December 2024 and another in November 2023. Dominant grass species include *Eragrostis superba* and *Cenchrus ciliaris*.

Figure 17: Figure 18: Earth bunds established and reseeded in 2024.

Figure 19: Earth bunds established and reseeded in 2023.

Participants used the Regreening App to monitor and record the earth bunds in each site, discovering additional species, *Aristida kenyensis* and *Dactylonium aegyptium*, growing naturally.

Figure 20: Participants record the earth bunds using the rangeland module in the Regreening App.

Figure 21: Tor Vagen records the earth bunds using the rangeland module in the Regreening App.

Noonkotiak Grass Seed Bank – Managed by AET, Supported by Justdiggit:

The 20-acre grass seed bank is run by 50 women, who manage the daily activities and security. The women harvest mature grass seeds and hay twice a year, selling seeds for 1000-1500 per kilogram. In 2024, they earned 2 million from seed sales, which they used to buy livestock, a traditionally male-dominated activity. The women are now empowered through this initiative, gaining financial independence and ownership of livestock.

Figure 22: Kenneth Sokoine, AET, introduces the Noonkotiak grass seed bank to the participants.

Figure 23: Some of the members of the Noonkotiak women's group who run and manage the grass seed abck.

Figure 24: Eragrostis superba, one of the grass species grown at the Noonkotiak grass seed bank.

Photos taken during the workshop can be accessed <u>here</u>

Rangeland health data use Workshop Kimana, Kajiado, Kennya 24-25 March 2025

The World Agroforestry (ICRAF) is pleased to invite you to a two-day data sharing and data use workshop for the projects, "Restoration of rangeland carbon sinks for increased community resilience and agricultural outcomes", and Towards Ending Drought Emergencies (TWENDE). This workshop will focus on discussing and interpreting rangeland health data and as well as provide training on use of the Regreening App to track rangeland restoration activities.

Background

The Rangeland Restoration project aims to provide a robust evidence base for sustainable management of rangeland health, informing management and monitoring by making this evidence available through user-friendly tools and platforms. The objective of the TWENDE project is to to reduce the cost of climate change induced drought on Kenya's national economy by increasing resilience of the livestock and other land use sectors in restored and effectively governed rangeland ecosystems.

The Land Degradation Surveillance Framework (LDSF) is a systematic monitoring framework to assess soil and rangeland health, land degradation and vegetation diversity. Three LDSF sites were randomized as part of the TWENDE project including the Chyulu Landscape and 18-1 km2 LDSF clusters were stratified across four conservancies in the Amboseli ecosystem as part of the Rangeland restoration project.

Objectives of the Workshop

The main objectives of the workshop are to: 1) To share the rangeland health data collected using the LDSF in the Amboseli and Chyulu Landscapes; 2) To build capacity on the interpretation and use of rangeland health data; 3) To understand the use cases for rangeland health data and current data needs within the Amboseli and Chyulu Landscapes; and 4) To build capacity around use of the Regreening App to monitor of rangeland restoration activities.

Figure 1: The Lionesses learn how to collect soil samples during the Amboseli LDSF survey.

1

Agenda

Time	Activity	Lead
Day 1: Monday	, 24 th March 2025	
8:30 - 9:00	Registration	
9:00 - 9:30	Welcome	AET
	Workshop objectives	Christine /Leigh
	Introductions / menti poll	
9:30 - 09:45	Introduction to rangeland health monitoring using the LDSF and the importance of data in rangeland restoration	Leigh Winowiecki/ Tor Vager
09:45 - 10:45	Understanding and interpreting rangeland health data	AET/Big Life/SDL/ICRAF
	 Introduction to the types of data collected for rangeland restoration 	
	- Group exercise: interpreting different types of rangeland health data	
10:45 -11:15	Coffee/ Tea Break	
11:15 - 12.30	Interactive session on Rangeland health data - data wall	AET /Big Life / SDL/ICRAF
12:30 - 13.00	Feedback session on the data wall	Christine Magaju
	 What conclusions/key actions/decisions can we derive from the data? 	
13:00 - 14.00	Lunch	
14:00 - 14:40	Use cases for rangeland health data	All facilitated by Christine/
	 What are the use cases for rangeland health data and which ones do you use the data for? 	Robin/ Clemence/ Eugene/ Sylvester/Wanda
	 What data do you already use or need for each identified use case? 	
14:45 - 15:30	Rangeland restoration data	All facilitated by Christine/
	- Current data needs	Leigh/ Robin
	- Decisions that could be improved with data	
	 Other uses of information and data 	

	 Opportunities for improving use of rangeland health data 	
15:30 - 16:00	Creating a data sharing and data use community of practice - How do we share data?	Christine/Leigh
16:00 - 17:00	Coffee and tea	
Day 2: Tuesday, 2	25 th March 2025	
8.00 - 8:30	Welcome back and reflection from previous day Menti poll – How are we currently monitoring rangeland health	Facilitators
8:30 - 12:00	Field visit and capacity building on the use of assisted citizen science for monitoring rangeland restoration	Benard/ Eugene/ Clemence/ Sylvester/ Silas/ Robin/ Wanda
	Regreening App: https://regreeningafrica.org/in-the-news/the- regreening-africa-app/	
12:00 - 12:30	Wrap up and next steps	Leigh Winowiecki
13:00 -14.00	Lunch at the hotel and departure	

Project resources

Website: https://www.cifor-icraf.org/restoration-of-rangeland-carbon-sinks/

LDSF Resources

LDSF GRIT: https://ldsf.thegrit.earth

 $Updated\ 2023\ LDSF\ field\ manual: \underline{https://www.cifor-icraf.org/knowledge/publication/25533}$