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Baillarguet Montpelier Cedex 5, France, 3 Faculty of Forestry GadjahMada University (UGM), Jl. Agro

Bulaksumur, n˚1 Sleman-Yogyakarta, Indonesia

* m.boissiere@cgiar.org

Abstract

Remote sensing has been widely used for mapping land cover and is considered key to

monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification

(MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it

also requires ground checking. Therefore, complementing remote sensing analysis using

participatory mapping can help provide information for an initial forest cover assessment,

gain better understanding of how local land use might affect changes, and provide a way to

engage local communities in REDD+. Our study looked at the potential of participatory map-

ping in providing complementary information for remotely sensed maps. The research sites

were located in different ecological and socio-economic contexts in the provinces of Papua,

West Kalimantan and Central Java, Indonesia. Twenty-one maps of land cover and land

use were drawn with local community participation during focus group discussions in seven

villages. These maps, covering a total of 270,000ha, were used to add information to maps

developed using remote sensing, adding 39 land covers to the eight from our initial desk

assessment. They also provided additional information on drivers of land use and land

cover change, resource areas, territory claims and land status, which we were able to cor-

relate to understand changes in forest cover. Incorporating participatory mapping in the

REDD+ MRV protocol would help with initial remotely sensed land classifications, stratify an

area for ground checks and measurement plots, and add other valuable social data not visi-

ble at the RS scale. Ultimately, it would provide a forum for local communities to discuss

REDD+ activities and develop a better understanding of REDD+.
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Introduction

Recent progress in mapping forest carbon biomass, using remote sensing, has been considered

important and broadly applied. For example, Asner et al. [1] mapped the above ground carbon

density for the whole of Peru. Other current research has even quantified global forest change

[2]. With such advancement in science, Remote Sensing (RS) and Geographical Information

System (GIS) tools have been widely promoted in REDD+ Measurement, Reporting and Veri-

fication (MRV) to estimate the baseline for carbon emissions and to monitor forest change

[3,4], in combination with on-the-ground methods [3,5].

But something is missing from these maps. A forest is not only trees and carbon biomass; it

is also people living in it and from it. Worldwide, millions of people depend on the forest for

their livelihoods, food, timber and land expansion for agriculture [6]. It is therefore important

that MRV capture the activities of local people as it may well play a major role in shaping forest

cover.

While remote sensing analysis provides a quick and precise assessment of the forest cover

on a large scale, it has more difficulty capturing locally driven changes and small-scale defores-

tation that might cause significant changes in land cover (LC). So, how can local information

be incorporated into RS maps? Rindfuss and Stern [7] suggested a combination of social sci-

ence and remote sensing approaches to provide a more complete picture of the situation on

the ground.

Participatory Mapping (PM), a process of using local perceptions and knowledge to build

maps of a shared geographical location, can be used to provide a social context to remote sens-

ing analysis. The following examples are a brief representation of the many forms and uses of

participatory maps: Balram et al. [8] used collaborative GIS methods for integrating local

knowledge to establish biodiversity conservation priorities; Sheil et al. [9] used community

mapping to gather information on natural resources, special sites (e.g. sacred sites) and local

perceptions of a shared geographical framework; Hossain et al [10] integrated RS, GIS and PM

to zone coastal resource use in Bangladesh; and Mapedza et al. [11] used participatory maps to

investigate Land Cover Change (LCC) and to capture human activities that lead to LCC in

Zimbabwe.

Using PM, we wanted to offer evidence that local communities’ extensive knowledge of the

landscape can provide a social context for MRV and help complete RS initial land/forest cover

assessments, essential if we are to understand the local drivers of forest change.

The research for this paper was part of a larger study looking at the conditions under which

participation in REDD+ MRV (PMRV) is feasible and sustainable [12]. This study took place

in Indonesia, which has progressed in its REDD+ readiness, especially regarding policy, legal

and institutional frameworks [13]. The creation of the Indonesian National REDD+ Agency in

September 2013 [14] seemed a promising step forward. However, Indonesia is still behind in

its REDD+ MRV readiness compared to other countries, like Peru and Brazil, especially in

terms of remote sensing (RS) and GIS capacity [4], which are predominantly based on desk

studies. Furthermore, merging the REDD+ Agency with the Ministry of Environment and

Forestry in 2015 [15] could be considered a step backwards in the implementation of the

REDD+ agenda.

Community participation in REDD+ is another aspect of this ‘readiness’ lagging behind

even though the United Nations Framework Convention on Climate Change (UNFCCC)

stipulated that indigenous people and local communities should be fully engaged in effective

participation in REDD+ [16]. Recently, Joseph et al. [4] highlighted the need to maximize

community participation in MRV, while others suggest it will improve social safeguards [17],

aid benefit sharing [18, 19] and reduce monitoring costs [20, 21]. With all these considerations,
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involving local communities in mapping, or other carbon estimation activities, could lead to

more effective, long-term community participation in REDD+ MRV

In this article we illustrate what information can be gained from local participation and

how much participatory mapping can add to forest mapping. While Vergera-Asenjo et al.

2014 [22], demonstrated that indigenous people could add to the accuracy of land cover identi-

fication, we focused on the content of local contributions rather than accuracy.

• We illustrate how participatory mapping can complement initial remote sensing land cover

classification and assist ground checks and future RS mapping.

• We show how correlations between Land Use (LU) and land cover, obtained from participa-

tory maps and remote sensing data, are used to interpret changes in forest cover.

• We also use historical context to explain these changes, which can be helpful for time series

analysis.

We provide examples and present our results for three Indonesian provinces (Papua, West

Kalimantan and Central Java) to illustrate the individuality of each landscape where local com-

munities still depend on the forest for their livelihoods and could therefore benefit from partic-

ipating in REDD+. It should be noted that additional technical and traditional knowledge was

only made available through local participation.

Research sites

This study was conducted in three districts: Mamberamo-Raya, Papua Province; Kapuas Hulu,

West Kalimantan Province; and Wonosobo, Central Java Province, Indonesia (Fig 1).

These three provinces are at different stages of the forest transition curve (Table 1) as

defined by Mather [23]. Papua, with the most important natural forest, has the smallest popu-

lation, lowest accessibility and high economic pressure. West Kalimantan is in the middle

of the transition moving towards more planted forests and higher deforestation, with an

Fig 1. Map of research sites in Indonesia

doi:10.1371/journal.pone.0166592.g001
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important secondary forest area. It has better access, higher population density and medium

economic pressure. Central Java is on the ‘recovery’ side as natural forest has all but disap-

peared, but villagers are replanting forests. It is among the most densely populated and eco-

nomically developed provinces in Indonesia.

Table 2 provides information regarding the local communities who participated in the

mapping activities in each province. Although there were important variations in ethnic

groups and dependency on natural resources, we noticed that most of the local people were

farmers and/or hunter-gatherer, with only a few fishermen. Literacy was high in Central Java

and West Kalimantan, but low in Papua. Access to the villages also varied: in Central Java,

communication was well developed, with roads and telecommunication networks reaching

most villages, while in West Kalimantan, the villages were often located far from the main road

and phone communication was only available in certain spots of the villages. In Papua there

were no roads to the villages or a telecommunication network. River transport was the only

way to reach the nearest town, often taking more than a day. Despite these differences, all the

Table 1. Research site description of forest and socio-economic conditions

Site description PAPUA WEST KALIMANTAN CENTRAL JAVA

Forest

conditions*
Forested area kha 31,530 14,699 3,498

Remaining area of

forest. kha(%)

Natural forest: 19,805(63%);

Secondary forest: 5,153 (16%);

Planted forest: 2(0.01%); Non-

forest: 6,868(21%)

Natural forest: 2,544 (17%);

Secondary forest: 4,064 (28%);

Planted forest: 12 (0.1%); Non-

forest: 7,952 (55%)

Natural forest: 0 (0.003%);

Secondary forest: 84 (3%);

Planted forest: 1,034 (30%); Non-

forest: 2,341 (67%)

Deforestation

between 2009–2011

ha/Year (%)

Natural forest: 6,800(0.02%);

Secondary forest: 3,577(0.01%)

Natural forest: 586 (0.004%);

Secondary forest: 41,152(0.30%)

Secondary forest: 499 (0.01%);

Planted forest: 3,739 (0.11%)

Dominant forest

regime kha(%)

Conservation: 7,755 (25%);

Protected 7,815 (25%); Production:

14,817(45%); Others: 2,162 (5%)

Conservation: 1,646(11%);

Protected: 2,307 (16%); Production:

5,226 (35%); Others: 5,708 (38%)

Conservation: 126 (3%);

Protected: 84(2%); Production:

547 (15%); Others: 2,851 (80%)

Socio-

economic

conditions*

Population Low Medium High

Accessibility Low Medium High

Economic pressure High Medium Medium

*Note: Forest conditions are based on data from the Indonesian Ministry of Forestry [24], while the socio-economic conditions are based on data from the

Indonesian Central Statistics Agency [25].

doi:10.1371/journal.pone.0166592.t001

Table 2. Research site description of local communities status and conditions

Site PAPUA WEST KALIMANTAN CENTRAL JAVA

Village’s ethnic

groups

Bagusa and Yoke Dayak Melayu Javanese

Main local

source of

livelihoods

Hunting (crocodiles, birds, small

mammals), NTFP gathering, fishing,

gardening (sago plantation), home

gardening

Gardening (upland rice and vegetables),

smallholder plantations (rubber), wood and

NTFP extraction, small-scale hunting

Smallholder plantations (Albizia, and

others), livestock, small scale NTFP

gathering and hunting

Education 5 to 40% had low or no education, 15 to

45% had completed high school and 25–

45% had received senior high school or

higher education

30 to 45% had low or no education, 26 to

45% had completed junior high school and

25% had received senior high school or

higher education

20% had low or no education, 60% had

completed junior high school and 20% had

received senior high school or higher

education

Occupation Village officials (e.g. secretary),

customary leader (e.g. clan leader, family

elder) farmers, hunters and fishermen

Village officials (head of neighbourhood RT/

RW), delegates from village associations

farmers, hunters, fishermen

Village officials (head of neighbourhood RT/

RW) Perhutani* representatives, farmers,

hunters *Indonesian state owned timber

company

doi:10.1371/journal.pone.0166592.t002
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participants in the mapping exercises could use the base maps, recognize the different parts of

their territories and fill the gaps with their knowledge and perceptions without any problem.

Most of the participants involved in the mapping exercises had received a junior high school

or higher education and were also officials or had customary positions in the village such as vil-

lage secretary, together with villagers that had extensive knowledge of their territory such as

hunters or fishermen.

Materials and Methods

This study was conducted in 7 villages (Table 3) by a multidisciplinary team comprising

researchers from three disciplines: 1) social science, 2) governance and 3) RS and GIS. To con-

duct the fieldwork, the foreign researchers received authorisation from the Indonesian Minis-

try of Research and Technology (Kementerian Riset dan Teknologi, Kemenristek) and the

Indonesian researchers obtained their authorisation from the Directorate General of National

Unity and Politics (Kesatuan Bangsa dan Politik, Kesbangpol) of the Indonesian Ministry of

Home Affairs (Kementerian Dalam Negeri, Kemendagri)

We describe the methods used by both the RS/GIS and social science teams to create maps

using community participation and remote sensing, to interpret the overlaps and correspon-

dence, and to correlate land use with land cover.

Base maps

Base maps were developed from different sources of satellite images depending on the best res-

olution available and lowest cloud coverage. In Papua, we used Landsat 7 for year 2000 because

this is the only data that provides cloud free coverage of the study area and is sufficient to gen-

erate land cover classifications. Cloud free data after 2000 were not available for these specific

locations. Comparing the year 2000 images with Landsat 8 data for year 2013, which had more

than 65% cloud cover, we found no dramatic changes during this period.

Table 3. Materials used to develop the base maps.

PROVINCES PAPUA WEST KALIMANTAN CENTRAL JAVA

(Villages) (Bagusa and Yoke) (Hulu Pengkadan, Nanga Jemah and

Sri Wangi)

(Lebak and Karang Anyar)

BASE MAPS

Features on the

maps

* Main rivers and

settlements according to

BPS 2011

Rivers, roads, settlements and

administrative boundaries according to

BPS 2011

Main rivers, water bodies, roads and settlements from World

Imagery base map from ArcGIS online**. Administrative

boundaries according to BPS 2011

Scale 1:50,000 1:10,000 and 1:30,000 1:4,000 and 1:6,000

Satellite Image

Source Landsat 7 (path 103 row

61)

Spot 5 and Landsat 8 (path 119 row 60) World Imagery**

Year 2000 2011/2013 2008

Resolution 30m 10m / 30m 1m

Scale 1:50,000 1:10,000; 1:30,000 1:4,000

Size of the area

(ha)

Bagusa: 90,000; Yoke:

140,000

HuluPengkadan: 2,700; Nanga Jemah:

32,400; Sri Wangi: 3,600

Lebak: 600; Karanganyar: 700

Note:

*Base maps for Papua were developed during previous CIFOR research [26].

**Source for World Imagery: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,

swisstopo, and the GIS User Community.

doi:10.1371/journal.pone.0166592.t003
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Ancillary data such as main rivers, settlements and boundaries were obtained from the Indone-

sian Central Statistics Agency [25] (Table 3). Village boundaries for each village were often

adjusted during the first community meeting. Throughout these meetings, positions and local

names of important places and topographic elements were added to the maps and geo-referenced.

Participatory mapping

Prior to our fieldwork, all team members agreed on common ethical guidelines: authorisation

must be sought not only from the government of Indonesia at the different governance levels,

but also from village communities including village authorities. Once we arrived in each village

(each visit), we reported to the village government, customary and religious authorities. We

introduced our research, explained how the research outcomes would be used and asked per-

mission to conduct the research. This information and our request were then presented during

community meetings. Six villages granted permission verbally, while the remaining one asked

for a written statement promising not to use the maps for anything other than our research.

These villages also requested an explanation of concepts such as carbon and climate change

before allowing us to start our activities.

Once permission to conduct the research was obtained we conducted a series of four (Land

Cover (LC) mapping, Land Use (LU) mapping, historical LU/LC and finalization) Focus

Group Discussions (FGD) in each village with 6 to 12 participants (men and women, of differ-

ent ages, in one group). Each FGD was assigned a facilitator (researcher) who helped with

drawing when necessary. We stated that participation was voluntary and open to all villagers.

Consequently, village men and women, young and old who were heads of clans, neighbour-

hood heads, village secretaries, farmers, midwives, fishermen and hunters participated in the

FGDs. They had a wide understanding and knowledge of their territory, which they were keen

to share. During the first FGD (LC), we overlaid the base maps with satellite images as

described in Table 3. The base maps helped the local people to identify the different features

and to delineate LC types and boundaries on the map. For each LC type the FGD participants

were able to describe the dominant vegetation, using local name(s), and often the Indonesian

vernacular name(s). Once the LC map was completed, a second FGD (with the same respon-

dents) for the LU map was conducted during which information on each land use was col-

lected (e.g. what kind of crops are planted in the gardens, do they hunt in all LC types).

The next step was a field check. Using the Global Positioning System (GPS), together with

two or more villagers who had attended the FGD, main topographical features (rivers, hills),

infrastructure (roads, settlements) and LU/LC types were geo-located. In total, 534 GPS points

were collected from all sites: 34 GPS points in Papua (participatory maps had already been

made and geo-referenced from a previous project: COLUP [26]); 101 for Central-Java and 399

GPS points in West-Kalimantan. Once the present LC and LU maps were completed, maps

describing historical LU/LC were generated using FGDs.

The final step of the participatory mapping process was to clean the draft maps and ask for

final amendments from villagers during a final FGD. For this purpose we displayed the tempo-

rary maps in public places for all villagers to review, give their comments and check the validity

of the maps. We also asked for authorization to use these maps for our research purposes dur-

ing a community meeting. We visited each village twice during 2013 and the digitized maps

were given to the villagers during the second visit.

Remote sensing analysis

For our study, remote sensing analysis was conducted entirely as a desk study in order to emu-

late how Indonesian government agencies conduct RS for REDD+ MRV.

Participatory Mapping and Remote Sensing for MRV
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As the satellite images covered larger areas than the study location we had to reduce the size

of the image to cover only the area of interest. For this we used a vector file, which defines the

boundaries, was used to subset all satellite images. To produce the RS maps, a pre-processing

of Landsat and SPOT data was conducted to reduce atmospheric disturbances. To produce

cloud free coverage data, we filtered haze, clouds and shadows using ERDAS IMAGINE12011

software (Leica Geo systems, Atlanta, Georgia, USA). The widely used dark object subtraction

(DOS) method of atmospheric correction was applied to correct the atmospheric effects caused

by atmospheric scattering [27]. For this, we used radiometric correction by subtracting the

pixel values of dark objects from all pixels in the image scene. The Normalized Difference Veg-

etation Index (NDVI) [28] was used to calculate the vegetation indices to determine the den-

sity of green vegetation cover in the area of interest. The NDVI gives an index of plant

greenness or photosynthetic activity. A high value means the area is densely vegetated, while a

low value corresponds to less vegetated or barren areas.

We then applied supervised classification to obtain land cover data [29]. This consisted of

recognizing and choosing features on the images and assigning them to a specific category,

using the Maximum Likelihood Classification (MLC) method. Dominant land cover classes

and densities (high, medium, low and no vegetation) were identified across the study sites

(Fig 2).

For the RS desk study land cover classification, polygon patches (30 training samples for

each land class category per site) were defined to run the classification method for Papua and

West Kalimantan. These training samples represent the same land cover categories (no vegeta-

tion, low, medium and high density vegetation and water body) on the image. In Papua

because RS detected mangrove, we added this class to the land cover categories for this site

only and similarly a category for settlement was added to the West Kalimantan classification.

For Central Java, because we used very high-resolution maps from World Imagery, we were

able to derive land features from direct, visual interpretation. Thus, we did not go through the

same process of analysis. However we used the same classification as we did for West Kaliman-

tan and Papua, with the additions of the two categories paddy fields and farms.

Data interpretation

In this article, we look into the complementarity of remote sensing maps used to classify land

cover and participatory maps. The villagers first drew the latter maps during community meet-

ings and then together we conducted ground checks. We did not compare the precision of

either method because that would need further fieldwork and ground checks would have been

needed for validation. However we show that the combination could help further ground

checks and validation.

Fig 2. Subset of Landsat image In West Kalimantan showing bands 5, 4 and 3 in RGB combination for

vegetation densities

doi:10.1371/journal.pone.0166592.g002
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Government agencies generally conduct remote sensing for national-level MRV, using

desk-studies, with very little knowledge of the field conditions [4]. In this study, we decided to

emulate this approach because we felt this was realistic for many developing countries trying

to implement REDD+.

In the first part of the interpretation, we overlaid the land cover maps from both methods

(RS and PM) using ArcGIS 10.11 software (ESRI 2011) to identify the overlaps and differ-

ences in land cover classification. These overlapping land covers were extracted and stacked in

matrices for each research site (Tables 4,5 & 6), with the remotely sensed land cover categories

in columns (8 categories in total across sites) and the local people’s land cover categories in

rows (39 categories in total across sites). These matrices enabled the team to correlate land

cover types from participatory mapping with land cover types identified using remote sensing.

Table 4. Overlap matrix between remote sensing (RS- vertical) and participatory mapping (PM—horizontal) of land cover classifications for

Bagusa and Yoke villages (Mamberamo Raya District, Papua).

PM \ RS No Vegetation

(km2)

Mangrove

(km2)

Low-density vegetation

(km2)

Moderate density

vegetation (km2)

High density vegetation

(km2)

Dense Forest 7.44 0.23 76.19 190.40 412.57

4% 0.% 16% 33% 50%

Moderately Dense Forest 4.99 0.16 88.28 67.59 55.76

3% 0.% 18% 12% 7%

Swamp forest (seasonally

flooded)

32.45 18.77 264.83 299.12 283.75

18% 13% 54% 51% 35%

Swampy bush (Permanently

flooded)

97.47 0.64 32.13 11.35 21.11

54% 0.% 7% 2% 3%

Fringe Mangrove 0.85 50.18 0.99 0.08 3.36

0.% 36% 0.% 0.% 0.%

Dwarf Mangrove 3.29 65.49 12.84 6.88 18.05

2% 47% 3% 1% 2%

Casuarinae sp. Tree 0.28 0.30 1.60 0.24 2.34

0.% 0.% 0.% 0.% 0.%

Beach 0.09 0.00 0.03 0.00 0.75

0.% 0% 0.% 0% 0.%

Marsh 17.15 0.14 2.53 2.60 7.55

9% 0.% 1% 0.% 1%

Water body 16.53 3.84 6.98 6.18 14.65

9% 3% 1% 1% 2%

Settlement 0.18 0.04 0.15 0.01 0.33

0.% 0.% 0.% 0.% 0.%

Total 180.72 139.79 486.55 584.44 820.22

100% 100% 100% 100% 100%

Terminology: Dense forest–or tropical rainforest according to Richards and Suryadi [30] is classified as dense by respondents because of tree height, and

concentration corresponds, to some extent, to the Indonesian Ministry of Forestry [31] classification of primary dry forest; moderately dense forest–

classified as moderately dense by respondents, because the stand is more sparse, and trees shorter, due to partial use of this forest for timber extraction

and other land uses; swamp forest–respondents said this swamp forest is seasonally flooded, especially during the rainy season corresponds, to some

extent, to the Indonesian Ministry of Forestry [31] classification of primary swamp forest; swampy bush–this land cover is permanently flooded according to

respondents, so very little access, but the Indonesian Ministry of Forestry [31] classifies the area as secondary swamp forest; fringe mangrove–corresponds

to tall mangrove trees bordering canals and rivers; dwarf mangrove–smaller mangrove trees (1.5 m) located more inside the mangrove forest, 5 to 20

meters away from the canals; Casuarinae sp. trees—these trees were planted on the beach in a government program to prevent tidal erosion; marsh–land

dominated by herbaceous plants on the edge of rivers, lakes and water bodies.

Note: Bold numbers are overlaps above 10%.

doi:10.1371/journal.pone.0166592.t004
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This highlights overlaps and areas where local people could complement remote sensing inter-

pretation by adding information about the vegetation types and density. We used maps from

Central Java to illustrate the overlaps as they displayed the highest resolution.

For the second part of the data interpretation, we made a descriptive analysis by overlaying

participatory LU maps with the LC maps derived from supervised classification of the satellite

images together with a distance from settlement gradient. Each polygon deliniated from these

three proxies was reported in matrixes together with its surface. We used these descriptive

(nominal and numerical) data to build Multiple Correspondence Analysis (MCA) using SAS/

STAT software, Version (8) 2014 (SAS Institute Inc., Cary, NC, USA The MCA software analy-

ses each line of the matrixes and presents the data set in a two dimensional graph. The X and

Y-axes of this graph are called dimensions and are weighted percentages. Graphs allow for quick,

visual interpretation using the proximity between each point to indicate the degree of associa-

tion/correlation–the closer the points, the higher the degree of association. We produced a graph

for each province to capture the correlation between land use and land cover in each landscape

(the dataset used to build the MCA are available in the supporting information files under S1

Dataset). However, for a matter of concision and clarity, we used only the distance from the set-

tlement as a proxy and chose only to display maps of Sri Wangi Village (West Kalimantan).

Finally, we present an historical map based on local perceptions of past land use and land

cover changes. We used one research site, Bagusa Village in Mamberamo Raya District, in

which these changes were more visually distinguishable. This map shows historical data gath-

ered during participatory mapping (in FGDs) and some data gathered through 28 key infor-

mant interviews on village history and land tenure, four in each village. Four key informants

per village were considered sufficient for the requirements of our study. Our key informants

were selected because they were knowledgeable, respected members of the community who

participated well during the FGDs. During the key informant interviews we used simplified

maps to discuss village history, past settlements, displacement and spatial tenure arrange-

ments. All personal information was then encoded in the database during analysis, and only

corresponds to a number to maintain the respondents anonymity.

Results

1- Comparing the maps

Land covers, obtained from our land classification analysis of remotely sensed data, provide

limited information on land cover types in the absence of ground checks. We found, however,

that participatory maps (assembled before RS experts conducted ground checks) provided

more detailed information on the different vegetation and/or ecosystem types (Tables 4, 5 and

6). In one area of Papua, for example (Table 4), the local people were able to identify two types

of mangrove forest, dwarf and fringe, on the printed satellite maps, while only one type was

initially categorised in the remote sensing land classification. During the ground checks they

were able to locate these two types of mangrove easily. Similarly, local people differentiated

swamp forest from dense forest on dry ground. On the participatory maps, the villagers identi-

fied 190 km2 of dense forest (the local people consider it dense due to the tree sizes and con-

centration), 68 km2 of moderately dense forest and 299 km2 of swamp forest that is seasonally

flooded, while the initial classification, based on remote sensing, describes only a moderately

dense vegetation covering 584 km2.

In Kalimantan the landscape is more a mosaic of natural forest, forest plantations and agri-

cultural land. During participatory mapping, one of the local communities included an area

that represented rubber plantations 3 to more than 7 years old (Table 5) in the land class under

low-density vegetation. In the village of Nanga Jemah, the local people described their area as

Participatory Mapping and Remote Sensing for MRV
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Table 5. Overlap matrix between remote sensing (RS—vertical) and participatory mapping (PM—horizontal) of land cover classifications, for Hulu

Pengkadan, Nanga Jemah and Sri Wangi villages (Kapuas Hulu district, West Kalimantan).

PM \ RS No vegetation

(km2)

Settlement

(km2)

Low-density

vegetation (km2)

Medium density

vegetation (km2)

High density

vegetation (km2)

Dense forest 0.06 0.13 0.35 33.00 40.06

2% 3% 2% 17% 26%

Concession logged over area by timber

company

0.05 0.25 0.75 92.36 73.86

2% 6% 5% 49% 49%

Past timber company camp 0.01 0.06 0.01 0.44 0.13

0.% 2% 0.% 0.% 0.%

Secondary forest (30–60 years old) 0.00 0.00 0.02 4.09 4.81

0% 0% 0.% 2% 3%

Secondary forest < 30 years old 0.00 0.01 0.41 8.45 1.52

0% 0.% 3% 4% 1%

Mixed rubber and secondary forest (between

30 and 60 years old)

0.02 0.01 0.04 0.50 0.04

1% 0.% 0.% 0.% 0.%

Smallholder rubber plantation < 3 years old 0.17 0;09 0.10 0.51 0.07

6% 2% 1% 0.% 0.%

Smallholder rubber plantation (3–7 years old) 0.61 0.78 4.22 7.43 0.28

22% 20% 28% 4% 0.%

Rubber plantation> 7 years old 0.96 1.23 6.80 20.35 1.38

35% 32% 45% 11% 1%

Waterlogged heath forest 0.00 0.01 0.01 7.59 21.59

0% 0.% 0.% 4% 14%

Mixed waterlogged heath forest and dense

forest

0.00 0.00 0.00 0.46 4.09

0% 0% 0% 0.% 3%

Agroforest predominantly durian 0.01 0.01 0.19 0.52 0.05

0.% 0.% 1% 0.% 0.%

Agroforest predominantly tengkawang 0.00 0.00 0.00 0.05 0.00

0% 0% 0% 0.% 0%

Cattle pasture 0.02 0.04 0.03 0.05 0.01

1% 1% 0.% 0.% 0.%

Upland rice field 0.47 0.88 1.53 3.39 0.18

17% 23% 10% 2% 0.%

Fallow land 0.18 0.13 0.64 10.16 3.05

6% 3% 4% 5% 2%

Paddy (rice) field 0.10 0.00 0.03 0.09 0.00

4% 0% 0.% 0.% 0%

Abandoned artisanal gold mine 0.01 0.02 0.00 0.10 0.03

0.% 0.% 0% 0.% 0.%

Artisanal gold mine 0.01 0.06 0.02 0.26 0.14

0.% 2% 0.% 0.% 0.%

Settlement 0.09 0.14 0.02 0.03 0.00

3% 4% 0.% 0.% 0%

Total 2.74 3.86 15.18 189.83 151.28

100% 100% 100% 100% 100%

Terminology: Dense forest–also locally called ‘hutan rimba’ is natural tropical rainforest; logged over concession area–regenerated forest that was logged

over between 1978 and 1989; secondary forest–regenerated tropical rainforest that has been logged either by a timber company or villagers; agro-forest

predominantly durian (Durio sp.)–agroforest with a mix of planted and naturally growing fruit and timber trees, but predominantly durian (fruit tree);

agroforest predominantly tengkawang–agroforest with a mix of planted and naturally growing fruit and timber trees, but predominantly tengkawang, from the

Dipterocarpaceae family belonging to Shorea sp. used for the timber and nut. waterlogged heath forest–a tropical moist forest found on the island of Borneo

also locally called ‘kerapah’.

Note: Bold numbers are overlaps above 10%.

doi:10.1371/journal.pone.0166592.t005
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different types of land cover: natural dense forest covering 40 km2 and natural regeneration

from a former timber concession (between 1978 and 1989) covering 74km2 while under the

land classification, using remote sensing, this area was described as high-density vegetation.

Because of the large areas and important diversity of tree species in Papua and Kalimantan’s

natural forests, it was not possible to identify dominant tree species for each land cover from

participatory mapping alone. In Central Java, however, because homogeneous planted forests,

agroforest and rice cultivation dominate the landscape, the respondents were able to identify

dominant species. For example, in Karang Anyar the state owned timber company (Perum

Perhutani Perusahaan Hutan Negara Indonesia) has forest dominated by pine trees (Pinus
merkussi) intercropped with albizia (Paraserianthes falcataria) and rubber (Hevea brasiliensis)
for tapping (Table 6), which in the high resolution of satellite imagery of World Imagery, were

classified as very high-density vegetation. The villagers also identified other classes of Perhu-

tani forests with mixed stands of pine, albizia, mahogany (Swietenia sp.), genitri (Elaeocarpus
ganitrus) and teak (Tectona grandis) have also been identified (Table 6) by villagers.

Identifying differences

The maps of Central Java (Fig 3) give an idea of the possible differences and overlaps between

participatory mapping methods and remote sensing in delineating land cover. The Central

Table 6. Overlap matrix between remote sensing (RS—vertical) and participatory mapping (PM- horizontal) of land cover classifications, for

Lebak and KarangAnyar villages (Wonosobo district, Central Java).

PM \ RS Settlement

(km2)

Paddy

field (km2)

Farm

(km2)

Low-density

vegetation (km2)

Medium density

vegetation (km2)

High density

vegetation (km2)

Very high density

vegetation (km2)

Perhutani—(Karang Anyar) pine,

with intercropping: albazia and

rubber

0.00 0.03 0.00 0.21 0.24 0.02 1.23

0% 1% 0% 19% 5% 1% 89%

Perhutani 1—(Lebak) pine and

albizia with other intercropping

0.00 0.03 0.00 0.00 0.64 0.02 0.00

0% 1% 61% 0% 13% 1% 0%

Perhutani 2—(Lebak) pine and

mahogany, genitri, albizia, and

surian with other intercropping

0.00 0.01 0.00 0.00 0.23 0.10 0.00

0% 0.% 0% 0% 5% 7% 0%

Perhutani 3—(Lebak) pine,

mahogany, teak and other

intercropping

0.00 0.00 0.00 0.06 0.34 0.11 0.00

0% 0% 0% 5% 7% 7% 0%

Agroforest 0.03 0.47 0.00 0.38 2.93 0.97 0.09

4% 17% 0% 35% 59% 61% 6%

Chilli Farm 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0% 0% 39% 0% 0% 0% 0%

Paddy field 0.00 2.16 0.00 0.44 0.55 0.37 0.06

0% 80% 0% 40% 11% 23% 4%

Settlement 0.78 0.00 0.00 0.00 0.02 0.00 0.00

96% 0% 0% 0% 0.% 0% 0%

Total 0.82 2.71 0.01 1.08 4.96 1.59 1.38

100% 100% 100% 100% 100% 100% 100%

Terminology: Perum Perhutani or Perusahan hutan Negara Indonesia–Indonesian state owned timber company; pine–dominant species is Pinus

merkussi; albazia–dominant species is Paraserianthes falcataria; rubber–Hevea brasiliensis; mahagony–Swietenia macrophylla; teak–Tectona grandis;

agroforest–mixed land cover with various crops and fruit trees; chilli farm–this particular land cover was distinct because of plastic covering; paddy field–

irrigated or upland rice fields, annual crops are planted in rotation with rice.

Note: Bold numbers are overlaps above 10%.

doi:10.1371/journal.pone.0166592.t006
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Java study sites cover smaller areas (about 6 to 7 km2), compared to our other sites (between

27 and 1400 km2), and present the highest resolution of satellite images (1 m) allowing a better

interpretation of satellite data. From World Imagery we were able to see small features such as

individual paddy fields, rooftops, roads, paths and farming practises (e.g. chilli farms) from the

high-resolution satellite images. These results, however, are not necessarily in agreement with

maps from participatory processes though we used the same World Imagery maps as base

maps for both methods (Fig 3). We overlaid the two maps and highlighted differences in land

cover (Fig 3C) reported in Table 7.

For instance, local people described agroforest in areas where land classification analysis

identified paddy fields. These differences covered 14% of the paddy fields. There was also a

36% overlap of paddy fields (PM) and low to high-density vegetation (RS).

2- Linking local land use to land cover

We used Multiple Correspondence Analysis (MCA) to draw clear correlations between land

cover (vegetation density) from land classification maps and local land use, which correlated

Fig 3. Maps of Lebak (Central Java) illustrating differences in land cover interpretation between RS and PM

doi:10.1371/journal.pone.0166592.g003
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to the dominant land use found in each land cover. In Papua (Fig 4), we found strong correla-

tions between hunting, collecting timber and NTFPs (land use) with low-density vegetation.

This was also verified using data from our key informant interviews. The forests where 43% of

the people interviewed go for these purposes, within a 2 to 10 km radius of the village settle-

ment, were covered in low-density vegetation. On the other hand, in swampy bush, an area

permanently flooded according to villagers, we found a correlation with seldom-used areas–

minimal hunting, and gathering of timber and NTFPs. Other correlations could be made from

this MCA, especially using distance from a settlement as a proxy. For example, high and

medium-density vegetation are found farther than 10 km from the village settlement, which

indicates a decrease in land use and an increase in vegetation density the further we are from a

village settlement.

In West Kalimantan (Fig 5), the MCA allowed us to correlate non-vegetated and low-den-

sity vegetation classes from land classification. These were derived from supervised classifica-

tion, with other land use such as agriculture, rubber tapping and collecting firewood, from

participatory maps, within a 0.5 to 1 km radius of the village settlements.

If we look at Fig 6, we can see that Sri Wangi has agriculture and smallholder rubber planta-

tions (between 3 and more than 7 years old) in close proximity to the village settlement (0 to 2

km). Intensity of land use correlates negatively with distance from settlements. For example,

within a 2 to 5 km radius, there is a strong correlation with medium-density vegetation, hunting

and NTFP collection. We found correlations between high-density vegetation and seldom-used

areas, collecting timber, agarwood and tengkawang beyond 5 km distance from settlements.

The area the land classification map, from supervised classification, identifies as no vegetation

(Fig 6 map a.), might be a result of crop rotation. The land classification map may have picked

up bare land cleared for upland rice cultivation, traditionally cultivated for 2 years before plant-

ing rubber. And low-density vegetation might also be associated with young plantations.

In Central Java, MCA (Fig 7) shows a high correlation between paddy fields and low-den-

sity vegetation, from land classification of the high-resolution satellite imagery, with agricul-

ture and chilli farms on participatory maps. In closer proximity to village settlements (0 to 0.5

km) high and medium vegetation density were found associated with villagers’ activities such

as intercropping, pine tapping and collecting NTFPs that are usually conducted in Perhutani

forests. Also very high-density vegetation in Karang Anyar Village is where the villagers inter-

crop Perhutani forest (pine trees) with rubber (Table 6).

Table 7. Percentage of contradicting overlaps in representation of the land cover by both methods (Central Java).

LC from Participatory mapping LC from Remote sensing Differences (%)

Lebak

Agroforest Paddy field 13.95%

Chilli pepper farm Paddy field and medium vegetation density 62.73%

Paddy field High to low-density vegetation 35.59%

Perhutani 1 Paddy field and farm 5.30%

Perhutani 2 Paddy field 2.58%

Perhutani 3 Paddy field 0.48%

KarangAnyar

Agroforest Paddy field, river and settlement 8.23%

Paddy field River, settlement, low to very high-density vegetation 46.84%

Perhutani Paddy field and settlement 2.07%

Settlement Paddy field, medium density vegetation 3.07%

River Paddy field, medium density vegetation 6.85%

doi:10.1371/journal.pone.0166592.t007

Participatory Mapping and Remote Sensing for MRV

PLOS ONE | DOI:10.1371/journal.pone.0166592 December 15, 2016 13 / 24



3- Mapping historical change in customary territory

During participatory mapping, from focus group discussions and key informant interviews we

collected information on village history including displacement of the village settlement, for-

mer garden locations, hunting and gathering places, and a sense of spatial tenure arrangement.

In Papua, areas where people obtain resources important for their livelihoods are usually

used to mark their territory. Village history, past settlements and old gardens (e.g. ancestral

sago groves) also play an important role in marking the village territory. These territories

could be exclusive as well as shared with neighbouring villages. In the Bagusa territory, for

example, people from neighbouring villages that share a common history or ancestor(s) are

granted access to hunt and collect food and other forest products for subsistence. Fig 8 shows

the former hunting and gathering areas that have expanded further south following the vil-

lage’s displacement to higher ground. The expansion of the territory is also due to population

growth. These hunting and gathering areas (grey with a dashed border on the map, see Fig 8)

are where villagers from Bagusa gather timber, NTFPs and hunt, and the area in which they

might have the biggest impact.

Fig 8 shows the changes attributed to either natural or anthropogenic causes. This informa-

tion was gathered during the mapping of past LC and LU. Natural changes are mostly due to

river erosion or seasonal flooding. While anthropogenic changes are due to human activities

that shape the forest such as slash and burn practises for opening gardens and digging canals

Fig 4. Multiple Correspondence Analysis (MCA) for Papua. (LDV: Low-density vegetation; MDV: Medium density vegetation; HDV: High density

vegetation; VHDV: Very high density vegetation; NTFP: Non-timber forest product)

doi:10.1371/journal.pone.0166592.g004
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to access lakes. This gives a better understanding of how local people are shaping their terri-

tory, which could be useful when analysing LC change.

Discussion

Dharmadi Hawthorne and Boissière [32] highlight current gaps in research on participatory

MRV. Research on the possible role of local communities in carbon estimations using remote

sensing and ground checks, is often missing. Here, we suggest that involving local communi-

ties in REDD+ MRV, using participatory mapping as a first check, will provide valuable social

data such as local land use, tenure arrangements, etc., information essential for land classifica-

tion (derived from supervised classification) of satellite images. We expect that community

participation in ground truthing and measurements will increase the information on complex

changes in forest cover.

Community participation is especially relevant where countries use RS to monitor REDD

+ implementation. For instance, in Papua, land classification categorised an area as ‘bare land’

covering 180km2, however, the villagers identified this area as mostly swampy bush (98km2)

and swamp forest (33km2). Getting the right information is especially important in carbon

estimations. Using the tier 2 approach [5] if we classify this area of ‘bare land’ as grassland for

a higher carbon estimate, the above ground carbon stock per ha would be between 2 to 4 Mg.

ha-1 [33], whereas swampy bush would be between 18 and 35 Mg.ha-1 [33] and swamp forest

Fig 5. Multiple Correspondence Analysis (MCA) for West Kalimantan. (LDV: Low-density vegetation; MDV: Medium density vegetation; HDV: High

density vegetation; VHDV: Very high density vegetation; NTFP: Non-timber forest product)

doi:10.1371/journal.pone.0166592.g005
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Fig 6. Maps of Sri Wangi (Kalimantan) showing a correlation between land cover (LC) using remote sensing (map a.), participatory mapping (map b.),

distance from settlement (map c.) and participatory land use (map d.)

doi:10.1371/journal.pone.0166592.g006
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between 90 and 200 Mg.ha-1 [33]. In another example from Papua, land cover classification cate-

gorised an area as one type of mangrove when the local people identified it as a mix of dwarf man-

grove (66 km2) and fringe mangrove (50 km2) [34]. This would make a significant difference in

terms of carbon stock if not differentiated. Dwarf mangroves store at least 8 Mg.ha-1, while fringe

mangroves store more than 500 Mg.ha-1 [35]. In another example from West Kalimantan, villag-

ers identified an area as secondary or regenerated forest from a timber concession operating

between 1978 and 1989, while the initial land classification without official data categorised the

same area as natural forest, which would effect carbon estimations [36]. The preceding carbon

stock estimates are based on the literature and do not take into consideration the validation of RS

analysis through ground checks nor measurements of the carbon stock in each land type.

GOFC-GOLD suggests the use of time series to estimate carbon emissions [5]. Participatory

mapping could follow these regular intervals to monitor land use and land cover at the same

time. However, this kind of information is limited to locations where people live and have

knowledge of. However, areas far from settlements need to be validated through more conven-

tional ways and because local people have a better knowledge of these remote places, they may

want to conduct ground checks and/or measurements. Local capacity could be increased to

estimate carbon for REDD+ national initiatives [37–39]. Chhatre and Agrawal [40] noted that

this kind of monitoring creates a sense of local ownership and value of forests, crucial to their

long-term acceptance and to the sustainability of PMRV. Also studies in remote areas have

highlighted the role of local people and their autonomous monitoring in deterring illegal log-

ging, encroachment and poaching [41] often with no acknowledgment. Incorporating local

monitoring into MRV could help detect early forest degradation and deforestation and

Fig 7. Multiple Correspondence Analysis (MCA) for Central Java. (LDV: Low-density vegetation; MDV: Medium density vegetation; HDV: High

density vegetation; VHDV: Very high density vegetation; NTFP: Non-timber forest product)

doi:10.1371/journal.pone.0166592.g007
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improve cooperation between local people and authorities to stimulate local action for rapid

forest management interventions [42].

GOFC-GOLD [5] in its guidelines for REDD+ carbon measurements, suggests that sam-

pling efficiency can be improved through spatial stratification using a known proxy (e.g. defor-

estation hotspots). Overlaying both maps would help reduce sample size and stratify ground

check areas to focus on LC overlaps and differences, such as those presented for Central Java.

Zhang et al. [43] integrated participatory processes with GIS multiple criteria to determine

suitable zones for conservation. Using the same principle, the overlay of information from

land cover, local land use, distance from settlement, access routes, etc., could help to determine

suitable areas for stratified measurement plots and increase confidence in carbon stock estima-

tions, while saving time and money.

The UNFCCC negotiations [16, 44] have encouraged developing countries to identify land

use, land use change and forestry activities, in particular those that are linked to the drivers of

deforestation and forest degradation [45]. While deforestation seems easy to detect using

remote sensing [2], forest degradation generally results in small changes in canopy cover (e.g.

small scale deforestation), which RS cannot detect, hiding the real extent of deforestation and

forest degradation [46].

Fig 8. Map of Bagusa village, Papua, displays settlement displacement, change in hunting area, natural and anthropogenic LU and LC changes

doi:10.1371/journal.pone.0166592.g008
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Correlating local people’s land use with patterns in forest cover can help us to understand

variations in the vegetation dynamics. For example, results from the Multiple Correspondence

Analysis (MCA) in West Kalimantan sites highlight the link between rubber tapping and low-

density vegetation or no vegetation. Other variables should also be selected as proxies such as

distance from settlements or travel axes (e.g. roads, rivers) etc. We found that vegetation den-

sity is also positively correlated with the distance from the settlements. While this may be an

obvious hypothesis, the maps and the MCA confirm and give a clear picture of how the villag-

ers extend their influence over forest vegetation. Although validating such an assumption

seems easy, validating different proxy analyses may prove more difficult to interpret. Thus, we

need to be careful not to generalize or extrapolate correlations as environmental and social

conditions may differ from site to site [47] as well as in time.

One limitation with time series is the availability of reliable satellite imagery for a given

period. For our research we had to use different dates (Table 3) for the different sites. We

wanted to work in similar conditions as the Indonesian national forest inventories, using the

same free source of satellite imagery. We also selected satellite images that had the lowest cloud

coverage, which was particularly difficult to obtain for Papua. The multi-temporal data are

also affected by seasonal factors [47]. This must be taken into account when designing MRV.

Because forest change can happen rapidly and crop rotation in shifting cultivation changes

every few years, monitoring forest change may require of more regular and closer intervals. In

West Kalimantan a plantation of young rubber (2 years old) and paddy fields were not picked

up due to time differences. This underlines the need to simultaneously conduct participatory

mapping and remote sensing analysis in a relevant and timely manner, necessitating more reg-

ular contact between the government and local communities, which could create stronger

links between the two. During our fieldwork, we were the first to develop a map of these com-

munity territories and acknowledge customary claims to forest and land.

Drawing the historical context (past LU, LC and drivers of change) of the villages (Fig 8) on

the maps revealed the impacts of previous settlements and plantations and shifting cultivation

have had on forests. This can be correlated with land cover change (LCC) from land classifica-

tion maps derived from supervised classification. However, there are risks in using PM that the

villagers may have forgotten exactly where and when events took place [47]. The absence of doc-

umentation and maps (e.g. community forest boundaries, land claims, forest management and

land use planning) also played an important role in that uncertainty [48]. Such documentation

exists and is exhaustive in Central Java, but is absent in Papua and incomplete in West Kaliman-

tan, highlighting the need for participatory mapping of site specific, local history and activities.

Participatory maps can also help identify potential conflict in land use [49]. This is espe-

cially true in the case of Indonesia where statutory tenure is often disconnected from the local

defacto (indigenous) tenure and therefore a source of conflict [50]. Discussion between the

government and the local community on the recognition of indigenous rights and tenure

claims is urgently needed, not only in the context of REDD+, but in other contexts as well.

The Indonesian Geospatial Information Act of 2011 encourages customary mapping

through land registration; and individual, group or corporate participation in the identifica-

tion of land parcel boundaries as part of a national program [51], which will help measure the

impact of REDD+ in the future. Furthermore, social safeguards for REDD+ require participa-

tion and respect for local and indigenous community rights [52] including the recognition of

customary rules [53]. The keen interest of local communities in drawing the maps is a good

indicator of their willingness to debate these issues. They also believed that the maps could

help them succeed in their territorial claims and expel outsiders [54].

Participatory monitoring of land use changes, combined with RS, could quickly verify of

REDD+ targets, assess the effectiveness of REDD+ interventions and provide local
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communities with incentivised alternative livelihoods [55]. Regular RS and PM of land use and

its implications for land cover together with livelihood and social data (e.g. tenure, source of

income for local communities) will help monitor changes in local livelihood under REDD+ activ-

ities and should be analysed when distributing benefits.

Drawing maps can help local people to visualize the space and scale of their daily activities

and bring different issues to the table for discussion. For example, Gaillard et al. [56] used par-

ticipatory mapping in Nepal to encourage multi-caste collaboration in climate change adapta-

tion and disaster risk reduction. But the representativeness of participatory mapping is under

debate. Gaillard et al. [56] call for caution on the process of validation as experience demon-

strates that if not conducted carefully, participatory mapping can represent a small group of the

respondents’ perceptions to the detriment of the rest of the community. Plus, formalising indig-

enous participation is not enough to break through existing power structures that can prevent

marginalized stakeholders from defending their interests [57]. Any participatory mapping activ-

ities must have ethical considerations ensuring that mapping outputs are fully understood by all

concerned, and traditional knowledge and its ownership are respected and protected [58, 59].

Conclusion

The impact of land use on forest conditions is site specific and cannot be separated from the

local context (e.g. economic, demographic pressure, governance) hence the need for local

monitoring. In this way local people will be able to play a key role in the measurement of car-

bon sequestration and provide important long-term information on forest dynamics. How-

ever, the connection between REDD+ MRV and local communities, which will provide

information on the efficiency of REDD+ and its impact on local livelihoods, is perhaps the

most important aspect of such a partnership.

As valued stakeholders, local communities would be more likely to join a partnership in mon-

itoring and protecting sensitive hotspots, particularly if their motivations to participate were

addressed. Participatory mapping is only one of the many tools to capture local knowledge and

local points of view, but it is not enough to secure local participation in REDD+ MRV. Local

communities need to see a direct benefit, be it financial or other, for contributing to the pool of

information needed for REDD+. There is not one single solution for all situations. Participatory

mapping must be adapted to the knowledge of different ecosystems, meet the interests of local

communities in using them and be useful to other relevant stakeholders. The potential of partici-

patory maps should not be underestimated especially in association with Remote Sensing, as

together they could play a key role in initiating discussion among all stakeholders on land use

arrangements and tenure issues, paramount to the success and sustainability of REDD+.
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S1 Dataset. Data Set for MCA. This file includes the different numerical and nominal data

used to build the Multiple Correspondence Analysis (MCA) graphs displayed in Fig 3. The
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X and Y coordinates generated by SAS/STAT software, Version [8] 2014 (SAS Institute Inc.,
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