
remote sensing  

Article

New Tropical Peatland Gas and Particulate Emissions
Factors Indicate 2015 Indonesian Fires Released Far
More Particulate Matter (but Less Methane) than
Current Inventories Imply

Martin J. Wooster 1,2,* ID , David. L. A. Gaveau 3, Mohammad A. Salim 3, Tianran Zhang 1,2,
Weidong Xu 1,2, David C. Green 4 ID , Vincent Huijnen 5 ID , Daniel Murdiyarso 3,6,
Dodo Gunawan 7, Nils Borchard 8, Michael Schirrmann 9, Bruce Main 1 and Alpon Sepriando 7

1 Department of Geography, King’s College London, Strand, London WC2R 2LS, UK;
tianran.zhang@kcl.ac.uk (T.Z.); weidong.xu@kcl.ac.uk (W.X.); bruce.main@kcl.ac.uk (B.M.)

2 NERC National Centre for Earth Observation (NCEO), King’s College London, London WC2R 2LS, UK
3 Center for International Forestry Research, Jl. CIFOR, Situgede, Bogor 16115, Indonesia;

D.Gaveau@cgiar.org (D.L.A.G.); moh.agus.salim@gmail.com (M.A.S.); D.Murdiyarso@cgiar.org (D.M.)
4 School of Population Health & Environmental Science, King’s College London, Strand,

London WC2R 2LS, UK; david.c.green@kcl.ac.uk
5 Royal Netherlands Meteorological Institute, 3731 De Bilt, The Netherlands; vincent.huijnen@knmi.nl
6 Department of Geophysics and Meteorology, Bogor Agricultural University, Kampus Darmaga,

Bogor 16680, Indonesia
7 Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta 10610, Indonesia;

dodo.gunawan@bmkg.go.id (D.G.); meteo.go@gmail.com (A.S.)
8 Institute of Geography, Soil Science/Soil Ecology, Ruhr-University Bochum, Universitätsstrasse 150,

44801 Bochum, Germany; nils.rydiger@googlemail.com
9 Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam,

Germany; mschirrmann@atb-potsdam
* Correspondence: martin.wooster@kcl.ac.uk; Tel.: +44-207-848-2577

Received: 31 January 2018; Accepted: 19 March 2018; Published: 21 March 2018
����������
�������

Abstract: Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their
flammability, and in September–October 2015 a strong El Niño-related drought led to further drying
and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These
fires resulted in some of the worst sustained outdoor air pollution ever recorded, with atmospheric
particulate matter (PM) concentrations exceeding those considered “extremely hazardous to health”
by up to an order of magnitude. Here we report unique in situ air quality data and tropical peatland
fire emissions factors (EFs) for key carbonaceous trace gases (CO2, CH4 and CO) and PM2.5 and
black carbon (BC) particulates, based on measurements conducted on Kalimantan at the height of the
2015 fires, both at locations of “pure” sub-surface peat burning and spreading vegetation fires atop
burning peat. PM2.5 are the most significant smoke constituent in terms of human health impacts,
and we find in situ PM2.5 emissions factors for pure peat burning to be 17.8 to 22.3 g·kg−1, and for
spreading vegetation fires atop burning peat 44 to 61 g·kg−1, both far higher than past laboratory
burning of tropical peat has suggested. The latter are some of the highest PM2.5 emissions factors
measured worldwide. Using our peatland CO2, CH4 and CO emissions factors (1779 ± 55 g·kg−1,
238 ± 36 g·kg−1, and 7.8 ± 2.3 g·kg−1 respectively) alongside in situ measured peat carbon content
(610 ± 47 g-C·kg−1) we provide a new 358 Tg (± 30%) fuel consumption estimate for the 2015
Indonesian fires, which is less than that provided by the GFEDv4.1s and GFASv1.2 global fire
emissions inventories by 23% and 34% respectively, and which due to our lower EFCH4 produces far
less (~3×) methane. However, our mean in situ derived EFPM2.5 for these extreme tropical peatland
fires (28 ± 6 g·kg−1) is far higher than current emissions inventories assume, resulting in our total
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PM2.5 emissions estimate (9.1 ± 3.5 Tg) being many times higher than GFEDv4.1s, GFASv1.2 and
FINNv2, despite our lower fuel consumption. We find that two thirds of the emitted PM2.5 come from
Kalimantan, one third from Sumatra, and 95% from burning peatlands. Using new geostationary fire
radiative power (FRP) data we map the fire emissions’ spatio-temporal variations in far greater detail
than ever before (hourly, 0.05◦), identifying a tropical peatland fire diurnal cycle twice as wide as in
neighboring non-peat areas and peaking much later in the day. Our data show that a combination
of greatly elevated PM2.5 emissions factors, large areas of simultaneous, long-duration burning,
and very high peat fuel consumption per unit area made these Sept to Oct tropical peatland fires
the greatest wildfire source of particulate matter globally in 2015, furthering evidence for a regional
atmospheric pollution impact whose particulate matter component in particular led to millions of
citizens being exposed to extremely poor levels of air quality for substantial periods.

Keywords: tropical peatlands; fire; particulate matter; emissions factors; PM2.5; air quality; Indonesia;
FRP; El Niño

1. Introduction

1.1. Landscape Burning in Southeast Asia

Smoke from landscape fires is a significant environmental health issue in parts of southeast Asia,
where burning is used routinely to clear unused lands (forest and scrub) before planting, to remove
post-harvest crop residues prior to re-planting rapidly and cheaply, or even as a weapon in land
disputes [1,2]. Comprised of a mixture of greenhouse gases (GHGs) and air pollutants [3–5], the smoke
impacts are most keenly felt during dry spells in Indonesia, which hosts more than 80% of SE Asia’s
carbon-rich tropical peatlands [6,7]. Peat deposits can exceed twenty meters depth in places [6–8],
having formed over millennia via the reduced decay of forest litter. Over the last 50 years, deforestation
and the construction of drainage canals, largely to support agriculture, has increased the flammability
of large areas of Indonesia’s tropical peatlands compared to their naturally moist state, and during
dry spells drained peat can dry sufficiently to be ignitable by surface vegetation burning [9–11].
The resulting fires can propagate vertically downward into the peat as well as laterally across the
landscape [9], generating potentially very large areas of simultaneous burning [1,11,12], with fuel
consumptions per unit area perhaps two orders of magnitude higher than most other landscape fire
types [13,14]. Burning these fossil carbon stores releases very significant amounts of the greenhouse
gas carbon dioxide [8,12,15], while the predominantly smoldering phase combustion also maximizes
production of the strong greenhouse gas methane [12,16], gaseous air pollutants such as carbon
monoxide, ammonia, hydrogen cyanide and formaldehyde [16–19], as well as fine particulate matter
(PM) [16–19]. This latter smoke constituent, locally termed “haze”, is the one having most direct
relevance to short-term human health [20], and it can also remain in the atmosphere for days or
weeks and be subject to long-range transboundary transport to affect citizens far from the fires
themselves [21,22].

The extreme 2015 El Niño lead to drought and the most severe Indonesian fire season since 1997,
with major international concerns related to greenhouse gas (GHG) releases [12] and biodiversity
loss [23]. In line with increasing anxieties related to wildfire smoke exposure [21–24], there
were also serious concerns regarding air quality impacts on human health [25]. With a few
notable exceptions [3,26–29], health has typically received far less international attention than the
climatological implications of El Niño-related SE Asian biomass burning, though recently atmospheric
chemical transport models (CTMs) have been used alongside particulate emissions estimates to begin
to assess the regional health consequences of fine PM exposure [26,30,31]. Wildfire smoke particles have
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a size distribution typically peaking well within the 2.5 µm particle diameter range [20], small enough
to pass into the human respiratory system [32].

Wildfire PM2.5 emissions estimates for input into CTMs are generally calculated by combining
mapped fuel consumption rates (g·m−2·s−1) with PM2.5 emissions factors (g·kg−1), but while
satellite-based approaches to estimate fuel consumptions are becoming increasingly available and/or
mature [33–36], until recently the only particulate (or indeed gaseous) emissions factors (EFs) available
for tropical peatlands came from a few laboratory burns of peat samples, and these showed significant
and unexplained intra-sample variability [16,37]. Emissions factors derived from laboratory burning
may also not be fully representative of true landscape fires [38], especially the type of extreme fire
conditions seen in Indonesia in 2015, which included large and intense forest fires flaming atop burning
peat [12]. Only in situ sampling of smoke from real landscape burning can likely deliver emissions
factors representative of such conditions, and at the height of the 2015 Indonesian fires a subset of the
current authors made the first tropical peatland fire emissions factor measurements based on field
sampled data, focusing on the primary emitted gases CO2, CO and CH4 [12]. The in situ EFs derived
from these data were significantly different to those seen in laboratory peat burning, especially in
relation to carbon monoxide and methane, and these findings were soon followed by [39] whose in situ
EFs included a far wider range of gaseous species as well as particulates. Here we add significantly
to these works, reporting further detailed EFs for tropical peatland fires that are based on in situ
measurements of PM2.5, black carbon, CO2, CO and CH4, made both in smoke from pure peat fires and
the combined burning of vegetation atop peat, including extremely intense forest burning. We both
update the prior gas-only EF’s presented in [12], extend to particulates, and use methods different (and
complementary to) those of [39]. We use our new gaseous emissions factors and in situ peat carbon
content measurements made at the fire sites to update satellite-derived estimates of Indonesian fuel
consumption [12], combine these with our EFPM2.5 measures to estimate fine particulate emissions, and
use new very high temporal resolution fire radiative power (FRP) data from geostationary satellites [40]
to understand the emissions variability over both individual days and over the fire event itself in
more detail than ever before (hourly temporal resolution, 0.05◦). We also assess the landscape and
physio-chemical peat properties of our field sampling sites to help determine factors that may regulate
EF variability, and we compare our total dry matter fuel consumption and smoke emissions estimates
to those provided by other widely-used global fire emissions inventories. Prior to these analyses,
we first put the atmospheric impact of the 2015 fires into context using data from Indonesia’s national
air quality monitoring network.

1.2. Indonesian Peatland Fires and Air Quality in 2015

Using satellite FRP and atmospheric carbon monoxide (CO) total column concentration retrievals,
along with tools developed within the Copernicus Atmospheric Monitoring Service (CAMS), it has
been previously estimated [12] that 336 ± 99 Tg of peat were consumed in the extreme September
and October 2015 Indonesian fires, along with ~52 Tg of vegetation. Satellite imagery (Figure 1a) and
Indonesia’s air quality monitoring network (Figure 1b,c), provide stark evidence of the enormous
atmospheric impacts of the emitted smoke. Palangkaraya, the capital of Central Kalimantan
(pop. 250,000) showed the greatest air quality impact, and daily average PM10 concentrations often
reached 1000 to 2000 µg·m−3 (Figure 1b), far exceeding those reported downwind of organic soil
burns elsewhere [41]. To our knowledge this represents perhaps the worst sustained air quality ever
recorded worldwide, with levels shockingly higher than the 50 µg·m−3 short-term (24-h) exposure
limit set by the World Health Organization (WHO), and far beyond even the 300 µg·m−3 judged by
the Singapore National Environment Agency (NEA) to be “extremely hazardous”. Figure 2a shows
the severe reduction in visibility experienced in Palangkaraya, and these types of extreme atmospheric
impacts were repeated to varying degrees across the region [42].
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Figure 1. Atmospheric impacts of the 2015 Indonesian peatland fires. (a) Aqua MODIS true color
composite (17 October) showing the regional haze (smoke) and with MODIS active fire detections
overlain (red). Only the far southeast corner of the scene appears relatively clear of haze. Area shown
in the inset of Figure 3 is outlined. (b,c) ground-level 24-h mean PM10 concentrations for air quality
measurement stations shown in (a), peaking in September–October 2015. Note the y-axis scale
differences. PM10 reductions towards the end of October result from heavy rain that extinguished
fires and helped clear the atmosphere of particulates [12,42]. Palangkaraya, close to where our
close-to-source field measurements were made, is marked in (a).
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Figure 2. Photographic evidence of haze impact and cause. (a) Extremely poor levels of air quality
and reductions in visibility were experienced in Palagkaraya, seen here on 12 October 2015 at a time
when the daily mean PM10 atmospheric concentration was ~850 µg·m−3 (Figure 1b). Photograph:
M. Wooster. (b) Smoldering peatland fire close to a Kalimantan drainage canal on 14 October 2015
(Location 3, Figure 3). The burning is primarily occurring underground, with thick smoke emanating
from under the peat surface. Photograph: D. Gaveau.

Figure 3. Five locations southeast of Palangkaraya city (Central Kalimantan) where in situ sampling
of smoke and peat took place. (a) Landscape and pre-fire vegetation cover types derived via
interpretation of a Landsat 8 ETM+ scene acquired on 19 August 2015. Insets show photographs taken
on 12 and 14 October at Location 1 (cover of scrubs and ferns atop peat) and 2 (forest regrowth atop
peat) respectively. (b) Landsat 7 false color composite (RGB = Band 7, 5, 3) acquired on 14 October 2015
(09:30 a.m. local time) showing a 20 km long flaming front progressing across a 16,000-ha peat-swamp
forest block around the time of our Location 3 measurements. Image striping results from the 2003
failure of the ETM+ Scan Line Corrector (SLC). Inset shows MODIS color composite imagery of the
same day, indicating the broader presence of very large smoke plumes coming from fires in the area
outlined in Figure 1.
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2. Methodology

2.1. Field Sampling Approaches

To derive particulate emissions factors based on direct in situ measurements we sampled smoke
at five fixed measurement locations, representing a variety of landscape types and fire behaviors in the
region primarily southeast of Palangkaraya (Figure 3; Table 1). PM2.5 makes up the clear majority of the
PM10 mass in biomass smoke [20], with [43] suggesting >90% in Southeast Asian haze, so we focused
on derivation on PM2.5 emissions factors as both the dominant particulate component and that of most
relevance to human health [3,4]. At Locations 1, 2 and 4 (Figure 3; Table 1) close-to-source, point-based
sampling of gas and particulate emissions was conducted directly (1–5 m distance) where sub-surface
peat burning was delivering smoke through surface cracks and gaps (Figure 2b). At these locations,
occasional surface (sometimes flaming) combustion of minor amounts of residual dead vegetation
added to the sampled smoke, and was noted when it did so. At Locations 3 and 4, point-based
sampling of smoke coming from spreading vegetation fires atop burning peat was conducted at greater
distances (>200 m) from the source (due to safety concerns) (Table 1). Figure 3 shows satellite imagery
captured close to the time of these field measurements, and at all but Location 3 were able to sample
the physio-chemical composition of the peat fuel as well as the smoke itself, in order to investigate
potential controls on emissions factor variability.

Table 1. Details of the five fixed measurement locations mapped in Figure 3.

Location No. (Figure 3)
and Sampling Date Source of Smoke Sample Pre-Fire Land Use Fire History (Mapping Back

to 1997–1998 Fires)

Loc. 1: 12 October
Close to source

smoke sampling.

Sub-surface peat burn. Occasional
flaming from dead surface

vegetation during early period.

Degraded lands, left idle
(not active agriculture),

dominated by scrub and
ferns. See left inset in

Figure 3.

Peat-forest burned in 1997 and
~every 3 years since.

Loc. 2: 14 October
Close to source

smoke sampling.

Sub-surface peat fire. Occasional
flaming from dead surface

vegetation during early period.
Young forest regrowth. Peat-swamp forest burned in 1997.

No reoccurrence.

Loc. 3: 14 October
Downwind

smoke sampling.

Large-scale fire burning in peat
forest block. Peat forest No previous evidence of burning.

Loc. 4: 15 October
Downwind

smoke sampling.

Flaming fire burning scrubby
vegetation atop peat.

Degraded idle lands,
dominated by scrub and

ferns. See left inset in
Figure 3

Peat-forest burned in 1997 and
~every 3 years since.

Loc. 5: 16 October
Close to source

smoke sampling.
Sub-surface peat fire.

Degraded idle lands,
dominated by scrub and

ferns. See left inset in
Figure 3

Peat-forest burned in 1991.
Burned ~every 3 years since.

2.1.1. Smoke Measurements at Fixed Locations

At each fixed measurement location, smoke plume PM2.5 concentrations were recorded at 1 Hz
using a TSI DustTrak™ DRX laser photometer (as deployed for biomass burning studies by e.g., [44,45]).
The DustTrakTM was fitted into a modified version of the aerosol sampling box described in [45],
with an isokinetic flow splitter (TSI 3708) directing the airflow to different measurement pathways and
Casella Apex Pro pumps providing the makeup flow to ensure correct size separation in the PM2.5

inlet (BGI miniPM® inlet 5011, 5 L·min−1). Smoke black carbon (BC) content was assessed using a
microAeth AE51 [46].

The DustTrakTM measures via the near-perpendicular particle scattering of a 780-nm laser diode
beam, and is factory-calibrated to give PM mass concentrations using the respirable fraction of
standard ISO 12103-1 A1 test dust (so-called Arizona road dust). DustTrakTM readings made during
applications where the dominant particulates have densities divergent from those of this A1 test dust
material require application of a re-calibration factor, usually derived through linear regression of
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contemporaneously collected DustTrakTM data and co-located gravimetric PM measurements [47,48].
Our application requires this, and our recalibration factor was based on simultaneous PM2.5 samples
collected on pre-weighed 25 mm Emfab filters (Pall Corp., New York, NY, USA; Type: EMFAB
TX40HI20-WW; Part No.: 7221) which we located within the aerosol sampling box so as to sample the
same incoming air as the DustTrakTM.

Following [45], simultaneous, co-located trace gas measurements were made to enable the 1 Hz
DustTrakTM PM2.5 concentration data to be converted into EFPM2.5 estimates. We recorded both CO
and CO2 (along with CH4 and H2O), to enable separation of periods of flaming and smoldering
combustion based on the plumes modified combustion efficiency (MCE) [49]. A high-precision, cavity
enhanced laser absorption spectrometer ([50] (supplied by Los Gatos Research-LGR, San Jose, CA,
USA) was used to measure all four gases simultaneously, increasing measurement performance and
avoiding many of the limitations found when using multiple lower-cost sensors having differing sensor
response times for each gas species [45,51]. At the 1 Hz sampling rate used, trace gas measurement
precisions were 2.63 ppm (CO2), 0.14 ppm (CO) and 1.71 ppb (CH4) [Allan variance, 1 sigma @ 1 Hz],
with a total absolute concentration uncertainty of 1%.

PM2.5, BC and trace gases were measured at each fixed location listed in Table 1 for 40–90 min,
with a variety of plumes sampled as wind direction changed and apparatus re-positioned (see Plumes
1 to 12 in the timeseries shown in Figure 4). Simultaneously with the co-located PM2.5 and trace gas
measures, remote sensing of the smoke from the wider combustion zone was conducted using an open
path (OP) Fourier Transform Infrared (FTIR) spectrometer-based “Air Monitoring System” (MIDAC
Corporation, Irvine, CA, USA). The spectrometer was sited to view through the plumes and towards
a ~1275 ◦C silicon carbide glower-based IR source, placed at the focus of a gold-plated aluminum
reflector around 20 m to 50 m distant from the spectrometer itself, as detailed in [52]. Data collected
outside of the plumes provided background samples, albeit of still heavily polluted air.

Figure 4. Excess trace gas and PM2.5 concentration time-series recorded at the sub-surface peat fire of
Location 1 (Table 1; Figure 3). Episodic periods of smoke exposure (“plumes”) are highlighted by the
grey banding (P1 to P12). MCE is shown only when ∆CO ≥ 6 ppmv (i.e., when a plume was being
sampled), and being less than 0.9 in most plumes indicates predominantly smoldering combustion
(some sampling of smoke from dead vegetation burning occurred early on at this location, and these
times show slightly elevated MCE values).

Finally, to provide measurements more representative of spatial variations in background “haze”
and occasional very large ground-level plumes, sampling of PM2.5, BC and trace gases was also
undertaken along a 240 km long, 9-h vehicle transect conducted from the southern coast (Banjarmasin)
to the interior (Palangkaraya) on 11 October 2015, close to the peak date of fire activity and using the
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same aerosol sampling box and laser absorption spectrometer as deployed at the fixed measurement
locations (see Section 3.5 for details of the transect route).

2.1.2. Physio-Chemical Measurements of Peat

At each fixed measurement location (bar Location 3), samples of unburned peat from areas
neighboring the active combustion zone were collected, sampling three places at each location and at
multiple depths (0–10 cm and 10–30 cm, plus wherever it existed at the very surface (O horizon)). Most
soil hollows formed by peat burning are less than 30 cm deep [9,14], and waterlogged conditions were
often found below this depth. Gravimetric moisture content was calculated by drying peat samples to
constant weight at 40 ◦C (to avoid loss of readily available organic matter), and carbon (C), nitrogen
(N) and hydrogen (H) contents were assessed using a Carlo-Erba Model 1108 Elemental Analyser.
Subsequently, air-dried peat samples were subject to spectral absorbance analysis (350–2500 nm
spectral range) to identify specific functional groups present in the organic matter.

2.2. Atmospheric Data Processing

2.2.1. Point-Sampled Data (DustTrak™ and Laser Absorption Spectrometer)

All 1 Hz data were first sub-sampled to 0.125 Hz to avoid our analyses being impacted by
autocorrelation effects stemming from non-negligible sample exchange times within the instruments
measurement chambers. Excess concentrations for each smoke constituent (x) (i.e., ∆x) were calculated
via subtraction of the first percentile of the non-plume measurements, representing the best estimate of
non-plume background concentrations (see example timeseries in Figure 4). Modified combustion
efficiency (MCE) was calculated using Equation (1) at times when plumes were being sampled (taken
as periods when ∆CO ≥ 6 ppm):

MCE =
∆CO2

∆CO2 + ∆CO
(1)

MCE broadly separates smoke into smoldering-dominated (MCE < 0.9) and flaming-dominated
(MCE ≥ 0.9) [20], and an example time-series for Location 1 is shown in Figure 4.

By basing our emissions factor calculations [Equation (1)] on emission ratios (ERs), derived as
the slope of the ordinary least squares (OLS) linear best fit to scatterplots of the laser absorption
spectrometer data for each plume (see examples for Plume 1, Location 1 in Figure 5), the derived EFs
are insensitive to inaccuracies in the assumed background concentrations, as explained by [52].

EFx = 1000·Fc·
MMx

MMc

(
ERx/CO2

∑n
j=1 NCj·ERj/CO2

)
(2)

where ERx/CO2 is the emission ratio of gas x to CO2 (mol−1·mol−1), Fc is the fractional carbon content
of the peat (unitless), MMx is the molecular mass of species x (g), 1000 g·kg−1 is a unit conversion
factor, MMc is the molecular mass of carbon (12 g), NCj is the number of carbon atoms in compound j,
and the sum in the denominator is conducted only over the three primary carbonaceous gases (CO2,
CO and CH4) that together account for more than 95% of total smoke carbon [38,53,54], inflating the
derived EFs by a few percent at most compared to if all carbonaceous species were included [55].
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Figure 5. Exemplar Indonesian peat fire trace gas emission ratios (ERs) for three carbonaceous gas
combinations (carbon monoxide and carbon dioxide, methane to carbon dioxide, and methane to
carbon monoxide respectively). ERs are expressed as the slope of the OLS linear best fit [mol·mol−1]
and are reported on each individual scatterplot. All data shown are for Plume 1 of Location 1, which
represents sub-surface peat fire smoke sampled close to source in situ on Kalimantan at the height of
the 2015 fires (Figure 4; Table 1). The OLS linear best fits use the subsampled (0.125 Hz) data (red),
while the full 1 Hz data are also shown (open circles). The 95% gradient confidence limit provides the
emission ratio uncertainty, which is used within the emissions factor uncertainty calculation.

The DustTrak™ data had the filter-based recalibration factor applied in order to deliver accurate
peat fire smoke PM2.5 concentrations (µg·m−3) (see Section 3.2). The re-calibrated data were used to
derive two independent estimates of each plumes PM2.5 emissions factor, based respectively on the
PM2.5 mass concentrations and the simultaneous CO and CO2 measurements following the approach
of [45]:

EFCO
PM2.5 = aER∆PM2.5/∆CO × EFCO (3)

EFCO2
PM2.5 = bER∆PM2.5/∆CO2 × EFCO2 (4)

where ER∆PM2.5/∆x is the ratio of PM2.5 to gas x, and a and b (µg·m3)−1 are unit conversion factors.
Because of the approximately 6× longer sample exchange time of the laser spectrometer compared

to the DustTrakTM, the temporal width of each smoke plume is typically wider in the trace gas record
than in the PM2.5 data (see Figure 4 example), a characteristic that can lead to potential emissions
ratio (and thus emissions factor) biasing if unaccounted for. “Plume-integrated” approaches of the
type often used during airborne campaigns [56] have been shown to be more effective than fixed
interval averages when adjusting for this effect [51], and per-plume ER∆PM2.5/∆CO2 and ER∆PM2.5/∆CO
measures were derived from our data using integrated amounts of each species assessed across the
duration of each plume. The two emissions ratios were then used to calculate two separate PM2.5

emissions factors using Equations (3) and (4).
An alternative approach to ‘plume integrated’ ER derivation was used to confirm the insensitivity

of the derived emissions ratios to the precise delineation of the individual plumes. This confirmation
was required because the partitioning into plumes was somewhat subjective and based on patterns in
the data and visual observations of the times when recently emitted smoke intercepted the sampling
inlet of the smoke measurement system (see Plumes 1 to 12 in Figure 4). This alternative approach to
emissions ratio derivation is detailed in [57], and is commonly applied during studies of ambient air
quality [58]. It defines the ER of two targeted atmospheric species via a reduced Major Axis Regression
(RMA) of three individual, temporally consecutive species concentration measures, moving through
the entire time-series and taking the mode as the final emission ratio [59]. Unlike the plume-integrated
approach, this second method of ER derivation does need to take explicit account of the differing sensor
response times of the laser spectrometer and DustTrakTM instruments, and so prior to its application
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the re-calibrated PM2.5 concentration data were pre-processed with a mathematical damping function
to simulate the response time representative of the trace gas record:

M(t) = PM2.5(t) · (1 − F) + M(t − 1) · F (5)

where M(t) and M(t − 1) are the damped PM2.5 measurements at time t (s) and t − 1 (s) respectively
[µg·m−3], PM2.5(t) is the mass concentration at time t given by the raw (re-calibrated) DustTrak™
measurements [µg·m−3], and F the sensor “slowness factor” calculated from the T90 response time of
the laser absorption spectrometer:

F = exp

[
ln( 1

10 )

T90

]
(6)

Finally, emissions factors of black carbon (EFBC) were derived from the microAeth AE51 data,
post-processed according to [60] and converted to PM2.5 black carbon (BC) mass fractions. Since ionic
carbon (IC) is generally considered to comprise <5% of the aerosol mass in SE Asian haze [61], any
non-BC PM2.5 was considered as organic carbon (OC) particulates.

2.2.2. Open Path FTIR Spectroscopy Data

The recorded single beam (SB) OP-FTIR spectra were converted into trace gas horizontal
pathlength amounts using the spectrum forward-modelling techniques described in [45,52].
Briz et al. [62] previously confirmed that trace gas retrieval approaches based on spectral forward
models are most effective in removing the need for a clean “background” spectrum, which was
certainly not available in the heavily smoke-polluted air encountered at each of the measurement sites.
The pathlength amounts were then subject to the same emissions ratio processing, and EF derivation,
as the point-based trace gas data (i.e., based on the methods shown in Figure 5 and Equation (2)).

3. Field Campaign Results

3.1. Peat Physio-Chemical Characteristics

Results from the peat physio-chemical sampling are detailed in Table 2. All peat samples showed
a higher C-fraction than most fresh biomass, extending to a maximum of 678 ± 4 g·kg−1 which is
typical of histosols having little or no mineral admixtures [63]. Since the sampled smoke came from
peat burning occurring at variable depths, the mean (± 1 σ) peat C-content (610 ± 47 g-C·kg−1) was
used in the carbon mass balance of Equation (2), and this measured figure is 10.9% higher than the
550 ± 55 g-C·kg−1 assumed by [12], and 5.4% higher than the 579 ± 25 g·kg−1 assumed by [39] during
their respective peat fire smoke emissions factor derivations.

Peat substrates all showed high C:N ratios (23 to 56) typical of ombrotrophic peats, while only
Location 2 retained a peat O-horizon. This topmost layer showed particularly substantial amounts of
partly decayed and strongly rooted organic matter, along with a reduced C:N ratio (20 ± 1) compared
to the substrate. This latter feature likely reflects the presence of biotic (i.e., living roots) and/or
abiotic (i.e., fertilization) nitrogen enrichment in this surface layer. The peat spectral analyses (see
Supplement) confirmed physio-chemical characteristics that varied somewhat with depth as well as
location, a finding extending to the moisture content which was substantially lower for the O-horizon
than the substrate (see Table 2).
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Table 2. Physio-chemical properties of unburned peat collected at the locations detailed in Table 1
and mapped in Figure 3. Values for each location (mean ± standard error) are calculated from three
independent samples, except for samples indicated with † (n = 1) and ‡ (n = 2). Samples relate to
the surface (O horizon) layer, and to depths 0–10 cm and 10–30 cm. The O horizon was absent at all
locations except Location 2, and no samples are available at Location 3 because the intense forest fire
(see Figure 3) rendered it inaccessible due to safety concerns.

Location Carbon (g·kg−1)
@ Peat Depth (cm)

Nitrogen (g·kg−1)
@ Peat Depth (cm)

C:N Ratio
@ Peat Depth (cm)

Gravimetric Moisture (g·g−1)
@ Peat Depth (cm)

Surface 0–10 10–30 Surface 0–10 10–30 Surface 0–10 10–30 Surface 0–10 10–30
1 -/- 631 ± 23 617 ± 7 -/- 18 ± 5 15 ± 0 -/- 42 ± 10 43 ± 0 -/- 245 ± 30 459 ± 43
2 564 ± 10 583 ± 9 ‡ 641 † 28 ± 1 25 ± 1 ‡ 16 † 20 ± 1 23 ± 2 ‡ 39 † 165 ± 6 364 ± 16 350 ± 13
4 -/- 678 ± 4 645 ± 9 -/- 12 ± 1 15 ± 1 -/- 56 ± 4 43 ± 2 -/- 206 ± 19 259 ± 9
5 -/- 571 ± 50 ‡ 585 † -/- 16 ± 1 ‡ 15 † -/- 36 ± 6 ‡ 39 † -/- 258 ± 1 223 ± 2 ‡

Mean (n = 4) 564 ± 10 616 ± 21 622 ± 12 28 ± 1 18 ± 2 15 ± 0 20 ± 1 39 ± 6 41 ± 1 165 ± 6 268 ± 29 322 ± 46

3.2. Calibration of the DustTrak™ PM2.5 Measures

To derive the DustTrak™ peat smoke PM2.5 recalibration factor, the exposed 25 mm Emfab filters
were subject to 48 h of post-fire conditioning (matching pre-exposure conditioning at 45–50% RH and
19–21 ◦C; CEN, 2014). They were then re-weighed using a Mettler-Toledo Ltd. (Leicester, UK) UMX2
balance (0.1 µg resolution) and RMA regression used to compare the DustTrak™ and filter-derived
PM2.5 concentrations, this being more appropriate than standard OLS regression when the independent
variable also contains uncertainty [64].

Figure 6 shows the derived DustTrak™ re-calibration factor of 0.5 ± 0.09 mg·m−3·(mg·m−3)−1,
which is the first for tropical peat fire smoke. This is higher than the 0.37 calculated by [65] for wood
smoke, but well within the 0.45 to 0.7 range derived by [48] for a variety of “real-world” biomass
burning smoke scenarios.

Figure 6. Derivation of the linear recalibration factor to be applied to the directly measured TSI
DustTrackTM PM2.5 particulate data to adjust for the lower density of peat smoke particulates compared
to ISO 12103-1 A1 test dust (so-called Arizona road dust) with which this instrument is factory
calibrated [47,48]. This recalibration factor was based on seven 25 mm Emfab filter samples of smoke
along with matching time-integrated DustTrakTM PM2.5 measures collected simultaneously in the field
using the aerosol sampling box described in Section 2.1.1.

3.3. Trace Gas and Particulate Emissions Ratios

Final per-plume trace gas and particulate ER’s based on the plume integrated analysis approach
are listed in Table 3, with the strength of the r2 coefficient of determination used to confirm each
ER as well determined [52,66], this exceeding 0.78 and usually 0.90 for all plumes (see example in
Figure 5). Figure 7 shows the strong agreement between the locational mean of the plume-integrated
ERs and the ER values derived for each of the same locations using the alternative approach of [57]
(see Section 2.2.1). The strong, unbiased relationship between the results of the two approaches
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allays fears of any strong sensitivity to how the timeseries concentration measures were divided into
individual plumes during application of the plume integrated analysis method. Table 3 indicates
ERs typically varying more between locations than between the plumes of any specific location,
particularly with respect to particulate ER’s which show an almost ×20 variation in ERPM2.5/CO
between Location 4 (flaming dominated fire in scrubland vegetation atop peat) and Location 5 (pure
smoldering sub-surface peat burning).

Table 3. Trace gas and particulate emission ratios for each plume sampled at the fixed measurement
locations listed in Table 1 and mapped in Figure 3. Means ± 1σ, along with mean MCE

(
MCE

)
, are

shown for each location, along with those of all plumes and the peat-only fire plumes in the final rows.
Trace gas ERs are presented in units of mole·mole−1, whilst particulate to trace gas emission ratios
(final three columns) are presented in units of mg·mg−1 based on standard temperature and pressure
[25 ◦C, 1 atm.] conversion factors of 0.556 and 0.873 mg·m−3·ppm−1 for CO2 and CO respectively.

Trace Gas Emissions Ratio (ER)
[mol·mol−1]

Particulate Emissions Ratio
[mg·mg1]

Plume CO to CO2
ER × 100

CH4 to CO2
ER ×1000

CH4 to CO
ER ×100 PM2.5 to CO PM2.5 to CO2 BC to PM2.5

Location 1

1 16.17 ± 1.06 12.82 ± 0.57 7.77 ± 0.21 0.173 0.0135 -
2 12.50 ± 1.16 9.80 ± 0.79 7.54 ± 0.16 0.182 0.0138 -
3 24.20 ± 0.81 15.11 ± 0.74 6.28 ± 0.14 0.105 0.0092 -
4 23.76 ± 1.68 14.47 ± 1.01 6.08 ± 0.13 0.090 0.0069 -
5 23.60 ± 2.49 14.63 ± 2.07 6.39 ± 0.32 0.112 0.0103 -
6 26.64 ± 0.98 16.15 ± 0.65 6.07 ± 0.06 0.117 0.0138 -
7 26.49 ± 1.13 16.26 ± 0.66 6.13 ± 0.11 0.126 0.0160 -
8 21.96 ± 1.20 12.98 ± 0.71 5.89 ± 0.10 0.119 0.0152 -
9 25.43 ± 0.73 16.23 ± 0.43 6.38 ± 0.04 0.132 0.0209 -

10 22.73 ± 0.98 14.68 ± 0.77 6.46 ± 0.18 0.115 0.0165 -
11 25.06 ± 0.84 16.53 ± 0.84 6.72 ± 0.18 0.119 0.0181 -

Mean ± 1σ 22.59 ± 4.41(
MCE

)
= 0.82 14.52 ± 2.01 6.52 ± 0.08 0.127 ± 0.028 0.014 ± 0.004 -

Location 2

1 18.42 ± 0.40 11.98 ± 0.22 6.42 ± 0.09 0.073 0.0076 0.0099
2 20.61 ± 0.92 11.91 ± 0.60 5.82 ± 0.05 0.097 0.0108 0.0065
3 21.13 ± 1.06 14.64 ± 0.59 6.81 ± 0.13 0.079 0.0092 0.0061
4 20.55 ± 0.92 14.76 ± 0.58 7.08 ± 0.15 0.081 0.0092 0.0054
5 20.21 ± 0.79 11.47 ± 0.42 5.65 ± 0.07 0.091 0.0096 0.0044

Mean ± 1σ 20.18 ± 1.04(
MCE

)
= 0.83 12.95 ± 1.61 6.36 ± 0.62 0.084 ± 0.010 0.0167 ± 0.0020 0.0064 ± 0.0023

Location 3

1 15.59 ± 1.03 13.90 ± 0.92 8.81 ± 0.27 0.200 0.0253 -
2 14.70 ± 0.87 12.12 ± 0.97 8.57 ± 0.19 0.263 0.0290 0.0134
3 16.64 ± 0.61 13.67 ± 0.63 8.27 ± 0.16 0.238 0.0275 0.0191
4 19.44 ± 0.85 16.75 ± 0.72 8.57 ± 0.13 0.187 0.0249 0.0180
5 18.36 ± 0.94 14.57 ± 1.08 8.13 ± 0.28 0.200 0.0225 0.0099

Mean ± 1σ 16.95 ± 1.95(
MCE

)
= 0.86 14.18 ± 1.68 8.47 ± 0.06 0.217± 0.031 0.0465± 0.0045 0.0121± 0.0077

Location 4
1 3.95 ± 0.27 4.01 ± 0.48 10.08 ± 0.34 - - -
2 5.64 ± 0.30 11.99 ± 0.51 20.98 ± 0.71 0.817 0.0233 0.0136

Mean ± 1σ 4.80 ± 1.20(
MCE

)
= 0.95 8.00 ± 5.64 15.53 ± 7.79 0.817 0.0419 0.0136

Location 5

1 25.99 ± 1.77 7.88 ± 0.46 2.95 ± 0.07 0.051 0.0067 0.0264
2 30.83 ± 1.80 9.05 ± 0.80 2.97 ± 0.15 0.068 0.0117 0.0104
3 36.48 ± 1.00 9.92 ± 0.33 2.74 ± 0.08 0.064 0.0086 0.0112
4 29.33 ± 1.73 8.57 ± 0.70 2.99 ± 0.11 0.048 0.0071 0.0104
5 27.66 ± 1.09 7.06 ± 0.46 2.61 ± 0.91 0.019 0.0032 0.0178
6 30.77 ± 0.74 7.80 ± 0.30 2.50 ± 0.09 0.022 0.0030 0.0201
7 27.14 ± 1.46 8.40 ± 0.44 3.04 ± 0.09 0.049 0.0063 0.0119

Mean ± 1σ 29.74 ± 3.48(
MCE

)
= 0.77 8.38 ± 0.84 2.82 ± 0.22 0.045 ± 0.019 0.0120 ± 0.0055 0.0154 ± 0.0062

Mean of All Locations 18.85 ± 9.16(
MCE

)
= 0.84 11.61 ± 3.17 7.94 ± 4.70 0.225 ± 0.279 0.0285 ± 0.0151 0.012 ± 0.004

Mean of Peat Only Fires
(Locations. 1, 2 and 5)

24.17 ± 4.97(
MCE

)
= 0.81 11.94 ± 3.20 5.23 ± 2.09 0.085 ± 0.041 0.018 ± 0.007 0.011 ± 0.006

For the gaseous ERs, Locations 1 and 2 (sites of sub-surface peat burning with very occasional
surface vegetation combustion; Table 1) show similar mean ERCO/CO2 values, and their relatively
low MCE indicate smoldering-dominated combustion processes. The higher MCE from location 3
indicates a probably greater contribution from flaming combustion, and here the smoke came from
burning forest vegetation as well as combusting peat (see Figure 4). Location 4, site of burning
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scrubland vegetation atop of peat, shows the highest MCE and a likely strong flaming combustion
source, whereas location 5 (smoke from sub-surface smoldering peat only) has by far the lowest MCE
of any site sampled. For methane, a different emission ratio picture emerges with respect to CO2

than to CO. ERCH4/CO2 for Locations 1 to 3 are quite similar (0.0013 to 0.0015 mol·mol−1), as are those
of Locations 4 and 5 (0.00080 to 0.00084 mol·mol−1), despite different fuel mixtures and styles of
combustion. ERCH4/CO shows stronger variability however, with plumes at smoldering-dominated
Location 5 showing a mean carbon monoxide to methane emission ratio approximately one third
of that seen at flaming-dominated Location 4. Locations 1 and 2 also show substantially different
ERCH4/CO, despite their similar MCEs and combustion styles. Recent work [67] has highlighted the
variability of the emissions ratios characteristic of tropical peatland burning, and our data attest to
this variability.

Figure 7. Emission ratio comparison between the locational ER means calculated from the individual
plume ERs for each location (Table 3), and those assessed across the entire time-series of each location
using the method of [57]. The near unity slope and near zero intercept of the OLS linear best fit to the
values derived from the two contrasting approaches indicates almost zero bias between them.

3.4. Trace Gas and Particulate Emissions Factors

Figure 8 graphs exemplar trace gas emissions factors for the Location 1 plumes, and Table 4
presents all EFs derived from all point-based sampling conducted at the fixed measurement locations.
Generally, these EF’s agree with those from the OP-FTIR measurements of smoke from the wider
combustion zone (also shown in Table 4), confirming the general veracity and representativeness of
the point-based measurements. We focus on the point-based data for our detailed analysis, because it
is for these that we can definitively identify the source of the smoke being sampled in any particular
plume. Huijnen et al. (2012) [12] reported gaseous EFs for a subset of the locations used herein, but
even without the further plume measurements included in the current work, our peat carbon content
measurements increase the trace gas EFs reported by [12] by more than 10% due to the significantly
higher peat carbon fraction we found (Table 2) than was assumed therein.
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Figure 8. Trace gas emission factors (EFx, g·kg−1) for the smoke plumes sampled at location 1 (Table 1;
Figure 3), shown here on a logarithmic y-axis. The emissions ratios for Plume 1, from which the EFs
are calculated via Equation (2), were shown in Figure 5. Secondary y-axis shows the plume averaged
MCE, higher for the first two plumes when residual surface combustion of dead vegetation contributed
additionally to the sampled sub-surface peat fire smoke.

We confirm high CO emissions factors (and MCE values) at all our sampled locations (bar
apparently flaming-dominated Location 4), and this confirms the dominance of smoldering combustion
sources at these peatland fires. However, some significant EF variations are seen. For example, the first
two plumes sampled at Location 1 show lower EFCO and EFCH4 (and higher MCE) than subsequent
plumes, due to more persistent residual (dead) surface vegetation combustion occurring at this time
(Figure 8). EFCH4 is rather consistent between Locations 1 and 2 (mean of 9.3 g·kg−1), but at the lowest
MCE location (Location 5) it is significantly lower (mean of 5.2 g·kg−1) and counteracted by a higher
EFCO (324 g·kg−1 compared to 256 g·kg−1).

Compared to the laboratory-based Indonesian peat burning EFs of [16], who report EFCH4 as
20.8 g·kg−1 (and EFCO as 210 g·kg−1), our in situ derived EFs from the peat-only fires of Locations
1, 2, and 5 (Table 4) are typically significantly lower (higher), though EFCO2 is similar. Laboratory
EFs from Indonesian peat burning reported by [37] are more similar to our in situ EFs (they report
emissions factors of 12.8 g·kg−1 and 233 g·kg−1 for CH4 and CO respectively), though with some
higher EFCH4 values still seen in these laboratory peat fire data. The field-measured EF’s of [39] (based
on closed-path FTIR sampling of downwind peat fire smoke) delivered an EFCO of 291 ± 49 g·kg−1

and EFCH4 of 9.5 ± 4.7 g·kg−1, overlapping with our very close-to-source measurements (albeit with
higher means). For CO2, [39] provides an EF of 1564 ± 77 g·kg−1, which is low compared to our mean
of 1775 g·kg−1 recorded at peat-only fires, but the value from [39] increases by a minimum of 5.4% to
1648 ± 81 g·kg−1 if the peat carbon content assumed in that work (579 ± 25 g·kg−1) is replaced by our
higher mean of 610 ± 47 g-C·kg−1 assessed at the actual 2015 fire locations (Section 3.1).
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Table 4. Per-plume trace and particulate emission factors for Locations 1 to 5 of Table 1 (mapped in Figure 4), along with their locational means ± 1σ and the overall
intra-site mean and standard deviation. All trace gas data come from the laser absorption spectrometer measurements, apart from those in the row labelled “OP-FTIR”
which are derived from the open path Fourier transform infrared spectrometer measures.

Trace Gas Emissions Factors [g·kg−1] Particulate Emissions Factors [g·kg−1]

Plume CO2 CO CH4
PM2.5 (with CO as
Reference Species)

PM2.5 (CO2 as
Reference)

BC (CO as
Reference)

BC (CO2 as
Reference)

Location 1

1 1903 ± 157 196 ± 21 8.89 ± 0.83 33.92 ± 8.93 25.68 ± 4.40 - -
2 1970 ± 163 157 ± 19 7.04 ± 0.81 28.40 ± 9.93 27.27 ± 4.67 - -
3 1778 ± 146 274 ± 24 9.80 ± 0.94 28.68 ± 5.14 16.33 ± 2.79 - -
4 1785 ± 148 270 ± 29 9.42 ± 1.02 24.47 ± 4.73 12.41 ± 2.13 - -
5 1787 ± 151 268 ± 36 9.53 ± 1.57 30.12 ± 8.93 18.53 ± 3.19 - -
6 1743 ± 143 295 ± 27 10.26 ± 0.94 34.62 ± 9.93 24.2 ± 4.14 - -
7 1745 ± 144 294 ± 27 10.34 ± 0.95 37.17 ± 6.27 27.94 ± 4.78 - -
8 1813 ± 150 253 ± 25 8.58 ± 0.85 30.27 ± 6.04 27.2 ± 4.74 - -
9 1759 ± 145 285 ± 25 10.41 ± 0.90 37.58 ± 6.44 36.79 ± 6.29 - -

10 1800 ± 148 260 ± 24 9.63 ± 0.94 29.97 ± 5.72 29.85 ± 5.11 - -
11 1764 ± 145 281 ± 25 10.63 ± 1.03 33.43 ± 5.83 31.99 ± 5.47 - -

Mean EF ± 1σ
[MCE = 0.82] 1775 ± 24 275.6 ± 14.5 9.8 ± 0.6 31.8 ± 0.6 25.0 ± 7.9 - -

OP-FTIR
Flaming fire 1793 ± 226 271 ± 34 6.39 ± 0.81
Smolder fire 1764 ± 223 285 ± 36 8.60 ± 1.09

Location 2

1 1868 ± 153 219 ± 19 8.16 ± 0.69 16.03 ± 2.97 14.35 ± 2.45 0.071 ± 0.017 0.063 ± 0.014
2 1835 ± 151 241 ± 23 7.97 ± 0.98 23.35 ± 4.00 20.26 ± 3.46 0.103 ± 0.023 0.086 ± 0.020
3 1823 ± 150 245 ± 24 9.73 ± 0.89 19.26 ± 3.13 16.28 ± 2.79 0.085 ± 0.019 0.076 ± 0.017
4 1832 ± 151 240 ± 22 9.86 ± 0.90 19.40 ± 3.28 16.77 ± 2.87 0.086 ± 0.019 0.074 ± 0.017
5 1842 ± 151 237 ± 22 7.77 ± 0.69 21.48 ±3.68 17.57 ± 3.00 0.095 ± 0.022 0.078 ± 0.018

Mean EF ±1σ
[MCE = 0.83] 1840 ± 17 236.4 ± 10.1 8.68 ± 1.03 19.90 ± 2.74 17.04 ± 2.15 0.0880 ± 0.0121 0.0753 ± 0.0085

OP-FTIR 1801 ± 216 264.2 ± 31.7 6.09 ± 0.72

Location 3

1 1911 ± 158 190 ± 29 9.68 ± 1.02 37.98 ± 7.20 46.94 ± 8.02 0.378 ± 0.096 0.492 ± 0.112
2 1928 ± 159 180 ± 18 8.52 ± 0.98 47.20 ± 9.60 55.30 ± 9.45 0.469 ± 0.121 0.562 ± 0.127
3 1894 ± 156 201 ± 18 9.44 ± 0.89 47.78 ± 8.94 53.35 ± 9.12 0.475 ± 0.110 0.510 ± 0.116
4 1845 ± 152 228 ± 21 11.27 ± 1.05 42.74 ± 6.88 45.69 ± 7.81 0.425 ± 0.094 0.458 ± 0.104
5 1866 ± 154 218 ± 21 9.84 ± 1.09 43.71 ± 7.50 43.59 ± 7.28 0.435 ± 0.097 0.412 ± 0.994

Mean ± 1σ
[MCE = 0.86] 1889 ± 34 203.4 ± 19.7 9.73 ± 1.14 43.88 ± 3.95 50.32 ± 4.72 0.437 ± 0.045 0.487 ± 0.013

OP-FTIR 1915 ± 214 192 ± 24 6.82 ± 0.86
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Table 4. Cont.

Trace Gas Emissions Factors [g·kg−1] Particulate Emissions Factors [g·kg−1]

Plume CO2 CO CH4
PM2.5 (with CO as
Reference Species)

PM2.5 (CO2 as
Reference)

BC (CO as
Reference)

BC (CO2 as
reference)

Location 4
1 2141 ± 176 54 ± 6 3.46 ± 0.36 - - - -
2 2092 ± 172 75 ± 7 9.14 ± 0.84 61.39 ± 10.99 48.71 ± 8.33 0.837 ± 0.196 0.665 ± 0.151

Mean EF ± 1σ
[MCE = 0.95] 2117 *2 ± 35 64.5 *2 ± 14.9 6.30 *2 ± 4.02 61.39 *2 ± 10.99 48.71 *2 ± 8.33 0.837 ± 0.196 0.665 ± 0.151

OP-FTIR 2180 ± 275 21.94 ± 2.77 7.77 ± 0.98

Location 5

1 1763 ± 147 292 ± 31 5.07 ± 0.51 14.89 ± 2.65 11.56 ± 1.98 0.178 ± 0.043 0.142 ± 0.033
2 1697 ± 142 333 ± 34 5.60 ± 0.68 22.66 ± 3.56 19.95 ± 3.41 0.271 ± 0.059 0.238 ± 0.054
3 1626 ± 144 378 ± 33 5.88 ± 0.52 24.20 ± 3.42 14.44 ± 2,47 0.289 ± 0.056 0.164 ± 0.037
4 1717 ± 143 321 ± 33 5.36 ± 0.63 15.51 ± 2.51 12.15 ± 2.08 0.185 ± 0.041 0.147 ± 0.033
5 1741 ± 143 307 ± 28 4.48 ± 0.47 5.89 ± 1.01 5.57 ± 0.95 0.070 ± 0.016 0.066 ± 0.015
6 1699 ± 140 333 ± 28 4.83 ± 0.44 7.39 ± 1.16 5.07 ± 0.87 0.088 ± 0.019 0.061 ± 0.014
7 1747 ± 145 302 ± 30 5.35 ± 0.52 14.78 ± 2.54 10.91 ± 1.87 0.177 ± 0.041 0.132 ± 0.032

Mean EF ± 1σ
[MCE = 0.77] 1713 ± 46 323.7 ± 28.5 5.22 ± 0.47 15.05 ± 6.88 11.38 ± 5.12 0.180 ± 0.082 0.136 ± 0.060

OP-FTIR 1716 ± 214 321 ± 42 5.21 ± 65

Mean of all Locations *3 1866 ± 154 220.7 ± 98.2 8.0 ± 2.1 34.41 ± 18.77 30.19 ± 17.62 0.385 ± 0.336 0.341 ± 0.282

Mean of Close-to-Source “Peat Only” Fires
(Locations. 1, 2 and 5) 1775 ± 64 279 ± 44 7.9 ± 2.4 22.25 ± 8.63 17.82 ± 6.86 0.134 ± 0.065 0.106 ± 0.043

*1 Plumes 1 and 2 at Location 1 do not contribute to the mean because they were affected by surface vegetation combustion (Figure 8). *2 MCE suggests flaming-dominated smoke, which
could mean mostly burning vegetation not peat, and if so EFs for this location should be reduced by up to 20% to reflect mean vegetation carbon content rather than the mean carbon
content of the peat sampled herein (this downward adjustment is applied during peatland landscape-averaged EF calculations of Section 4). *3 This mean includes all locations, whereas
the mean of the close-to-source sampled ‘peat only’ fires (Locations 1, 2, and 5) is shown in the final row.
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For particulate EFs, Figure 9 shows exemplar values for the five plumes sampled at Location 2.
These show almost constant MCE, EFBC and EFPM2.5, with the latter similar whether CO or CO2 is
used as the reference gas (see Equation (3) and (4)). Lab-measured EFs of 6.02 g·kg−1 for organic
carbon particulates from burning of Indonesian tropical peat were reported by [16], which seem very
low compared to our in situ values, while [39] report field EFPM2.5 of 21 ± 4.6 g·kg−1, pleasantly
similar to our in situ mean of 17.8 to 22.3 g·kg−1 for peat-only smoke, despite being based on a
completely different approach to our DustTrakTM method (specifically photoacoustic extinctiometry,
supplemented—as with our approach—by gravimetric filter samples). At Locations 3 and 4 we
sampled smoke further downwind from the source, and from fires having an apparently greater flaming
contribution (according to the MCE values and landcovers, which included significant vegetation
atop the peat). Here we sampled smoke from a combination of peat burning and overlying vegetation
combustion, and found EFPM2.5 elevated to 44–61 g·kg−1, very significantly higher than at the locations
of sub-surface “pure” peat combustion alone (Locations 1, 2 and 5). This EF is also higher than the
pure tropical forest burning EFPM2.5 of 17.8 ± 4 g·kg−1 reported by [68], and the 9.1 ± 3.5 g·kg−1

reported by [54]. Our in situ EFPM2.5 measures recorded at these mixed combustion sites are in fact
some of the highest seen for landscape burning, approaching the maximum values reported for some
US organic soil burns [69]. Smoke from Locations 3 and 4 also showed a higher black carbon fraction
than the peat-only fires, which is in agreement with their partly flaming sourced smoke, though our
data overall fully agree with [39] in that organic aerosol (OA) represents the clear majority of PM2.5

from tropical peatland burns (a minimum of 97% in our fires, see Table 3).

Figure 9. Emissions factors (g·kg−1) for PM2.5 (left axis) and black carbon (right axis) for the 5 plumes
of Location 2 (Table 1; Figure 3). Modified combustion efficiency (red line) is shown on right axis,
scaled by 0.1 for plotting and remaining constant across the period of measurement.

Our comparisons between the peat physio-chemical properties (Table 2) and smoke characteristics
(Table 4) found only a few noteworthy relationships, most significantly between site-averaged MCE and
peat moisture at 10–30 cm depth (Figure 10a), and between site-averaged EFPM2.5 and MCE (Figure 10b).
In the latter case, as smoke becomes more dominated by flaming combustion one might normally
expect both MCE and EFPM2.5 to decrease. However, we find our two highest EFPM2.5 measures
(Table 3) to be from Locations 3 and 4, where we sampled smoke from areas of vegetation combustion
atop burning peat (Table 1), and our highest MCEs were also found here—denoting a significant
flaming contribution to the emissions. The elevated EFPM2.5 compared to the pure subsurface peat
fires may be due to either a change in the combustion characteristics at these mixed combustion
sites compared to the pure sub-surface peat burning, or possibly to the impact of nucleation and
condensation processes in the (primarily organic aerosol) plume as it is travels from the source to the
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sampling location (which was more distant for Locations 3 and 4 compared to the very close-to-source
sampling possible at Locations 1, 2 and 5). However, in one of a relatively few studies to analyze
apparent changes in smoke organic aerosol (OA) emissions factors as plumes age, [56] report that that
dilution-driven evaporation of volatile organic compounds dominates over the chemical production of
secondary organic aerosol (SOA) within the aging biomass burning plumes sampled, resulting in OA
emissions factors that decrease (rather than increase) with time since emission. Furthermore, even at
our downwind sampling sites (Locations 3 and 4) our sampling time since emission was far shorter
than the many hours investigated by [56] since the sources were hundreds of meters to a few km away,
giving relatively limited scope for plume processing to occur.

At single locations where MCE varied significantly between plumes, there were reasonably
significant linear relationships between MCE and certain gaseous EFs (up to r2 = 0.82 for EFCH4),
as might be expected from past laboratory studies of fire emissions [16]. However, this did not extend
to particulate EFs, where the strongest relation was found between EFPM2.5 and EFCH4 at Location 5
(Figure 10c), suggesting a potentially common control on both at this location.

Figure 10. Relationships between peat physio-chemical and smoke metrics (modified combustion
efficiency and emissions factors). (a) Locational averaged MCE and peat moisture at 10–30 cm depth
(Location 3 is omitted as no peat sampling occurred there), (b) locational averaged PM2.5 emissions
factor and MCE, and (c) EFPM2.5 and EFCH4 for the seven plumes sampled at Location 4.

3.5. Transect Measurement Results

CO concentrations sampled on 11 October 2015 along the 240 km long transect moving northwards
from the southern coast of Kalimantan (Banjarmasin) are shown in Figure 11a, superimposed on
remotely sensed imagery showing the general distribution of haze from MODIS, along with the
location of active fires and burned area derived, respectively, using VIIRS [70] and Landsat [36] based
methods and satellite data of that same day. Though even the coastal city of Banjarmasin appears
to lie just within the haze-affected area according to the background MODIS image, far worse air
pollution was found further north, with very significantly elevated carbon monoxide concentrations
encountered from around 60 km southeast of Pulangpisau (town marked on Figure 11a). Further north
along the road towards Palangkaraya the largest active fire cluster detected by VIIRS can be seen as
an extended linear front, located just southwest of the main road and at the border of the final burn
scar depicted via the Landsat processing. This is the same fire seen burning in a similar location in
the Landsat imagery of 14 October (Figure 3b), located southeast of Palangkaraya in forest vegetation
atop peat and indicating the persistence of these peatland fires. Emissions from road traffic prevented
detailed analysis of CO2 data recorded during the transect, but CO and CH4 measures showed maxima
of 35 ppm and 3.6 ppm respectively during passages through major fire plumes encountered during
the 9-h drive. Palangkaraya itself showed CO concentrations of 29.5 ppm in the city center, which
whilst not nearly as concerning for health as the ~1000 µg·m−3 of PM10 simultaneously recorded
(Figure 11b) this does approach the 1-h CO threshold set for ambient air quality in the region [71],
and far exceeds the 8-h mean exposure threshold of 9 ppm. ERCH4/CO encountered on the transect
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ranged between 0.05 and 0.1 ppmv·ppmv−1, similar to the range recorded at our fixed measurement
locations (c.f. location specific ERs reported in Table 3). ERPM2.5/CO recorded during vehicular plume
transects also showed values within the range found at our fixed measurement locations reported in
Table 3 (e.g., Figure 11b; 0.162 mg·mg−1).

Figure 11. Transect-based measurements of trace gases and particulates conducted on 11 October 2015
during a 9-h drive from Banjarmasin to Palangkaraya. (a) CO measures made along the transect,
superimposed on MODIS colour composite imagery of that day processed to highlight ‘haze’ affected
areas and overlain with 2015 burned areas derived from classification of Landsat ETM+ data (using
methods described in [36]), and active fire detections made using the VIIRS I-Band “small active fire”
detection approach detailed in [70]. Spreading active fires can be seen at the edge of certain of the burn
scars, and the MODIS background image shows haze extending to Banjarmasin, but cleaner air just
south east of this location. (b) Exemplar CO and PM2.5 measures recorded during an 18-min section of
the transect directly east of Pulangpisau (see (a)). Battery issues prevented transect measurements all
the way to Palangkaraya, though instruments were again powered up from the mains to record in the
city centre.

4. New Large-Scale Emissions Estimates

4.1. Peatland EF’s, Gaseous Emissions Totals and Dry Matter Fuel Consumption

In situ gaseous EFs for a subset of the locations included in Table 1 were already reported by [12],
upon which the first published total carbonaceous gas emissions calculations for the 2015 Indonesian
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fire event were based (see [12] for details). The gaseous EFs we report in Table 4 are not only more
extensive however, but also greater because they are based on our higher measured peat fractional
carbon content (Table 2) rather than the lower C-fraction assumed by [12] whilst measured C-contents
were unavailable. Use of our new Table 2 trace gas emissions factors for burning of both pure peat
(Locations 1, 2 and 5) and vegetation atop peat (Locations 3 and 4) enables us to calculate “peatland
landscape” EFs, based on a 73% weighting of pure peat burning and 27% vegetation burning atop
peat following [12,54,72]. These peatland EFs are 1779 ± 55 g·kg−1 for CO2, 238 ± 36 g·kg−1 for CO,
and 7.8 ± 2.3 g·kg−1 for CH4, and since they are within 10% of those calculated by [12] using the
same weighting factors they provide little evidence for a major change to the total emissions of these
three dominant carbonaceous gases reported therein. In fact, to derive total emissions of CO, CO2

and CH4, [12] used a top-down optimization approach based on comparisons between spaceborne
MOPITT atmospheric CO concentrations and a priori Global Fire Assimilation System [GFAS] CO
emissions from [33] placed within the C-IFS atmospheric chemistry transport model (operated as part
of the Copernicus Atmosphere Monitoring Service). The resulting CO emissions estimate reported
by [12] is therefore insensitive to changes in EFCO. Furthermore, since the CO2 and CH4 emissions
estimates of [12] are based on this top-down, “optimized” CO emissions estimate, along with the ratios
of the CO2 and CH4 emissions factors relative to those of CO (rather than the absolute EF values, as
would be the case in “bottom-up” calculations such as employed by GFAS [33] and the Global Fire
Emissions Database (GFED) [34]), the total CO2 and CH4 emissions estimates provided by [12] are
also unaltered by our use of a higher peat carbon content in Equation (2). Table 5 presents the gaseous
carbonaceous emissions totals derived by [12] and confirmed herein, and compares these to those
reported by GFASv1.2 [33] and GFEDv4.1s [34]. The primary difference is the much larger methane
emission total reported by these latter databases, primarily related to their sensitivity to assumed
CH4 emissions factors and their assumption of tropical peat and tropical peatland EFCH4 values of
20.8 g·kg−1 and 11.8 g·kg−1 respectively, based primarily on laboratory peat burning and EF summary
databases [16,54]. These are far higher than the 7.9 and 7.8 g·kg−1 EFCH4 means we respectively report
for ‘pure peat’ and ‘peatland’ fires on the basis of our in situ smoke sampling (Table 4).

Table 5. Total carbonaceous trace gas emissions for the September–October 2015 Indonesian fire event,
as reported by [12] and confirmed with the new gaseous emissions factors derived herein, and by
GFEDv4.1s (0.25◦) [34] and GFASv1.2 (0.5◦) [33].

Trace Gas Emissions (Tg)

CO2 CO CH4

Top-down MOPITT and GFAS optimized, see [12] 692 ± 213 84 ± 18 3.2 ± 1.2
GFEDv4.1s 786 97 9.6
GFASv1.2 922 111 10.9

To provide the dry matter (DM) fuel consumption estimates for the 2015 Indonesian fires, [12] use
their total CO2 emissions estimate (reported in Table 5) and their CO2 emissions factor (use of CO2 is
preferred because it is the species whose EF is typically the most consistent between periods of flaming
and smoldering and between combustion of different fuel types, as well as it being the species emitted
in greatest quantity). Unlike the gaseous emissions estimates, the DM fuel consumption estimate
reported by [12] is sensitive to changes in EFCO2, and based on our in situ emissions factor update for
these tropical peat and vegetation fires we calculate a new total DM fuel consumption of 358 Tg for
Kalimantan and Sumatra during September–October 2015, distributed as shown in Table 6 (we retain
the GFASv1.2 standard tropical forest EFCO2 for non-peatland regions of these islands, as did [12]).
Our DM fuel consumption total is overall slightly lower than that of [12], reflecting our higher peatland
fire CO2 emissions factor (1779 ± 55 g·kg−1) and the fact that the clear majority of the fuel consumption
occurred in peatland landscapes. Our DM total is more significantly lower than those of GFEDv4.1s
and GFASv1.2 (Table 6), though in fact our Kalimantan total is quite similar to the basic GFAS inventory
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in September and October, but for Sumatra we calculate greatly reduced values compared to GFAS
(primarily because optimization against MOPITT CO significantly lowers the Sumatra emissions
compared to the a priori GFAS, as detailed in [12]). GFED’s total DM fuel consumption estimate
(461 Tg) is almost exactly midway between that of GFASv1.2 (541 Tg) and the 358 Tg provided by our
calculations, but its distribution between islands and between the two months of extreme burning
is very different, possibly reflecting major differences between its purely bottom-up methodology
and the MODIS burned area product that drives it, and that of the MODIS fire radiative power
(FRP)-based GFAS (though the FRP-to-DM conversion factors used by GFAS are based on previous
GFAS comparisons to GFED [33]). Overall, our use of MOPITT CO observations, in situ gaseous EFs,
and the deployment of these in adjusting the basic GFAS emissions (as detailed in [12] and updated
herein) has significantly reduced the DM fuel consumption estimates of the September–October
Indonesian fires compared to the most widely used global fire emissions inventories.

Table 6. Total dry matter (DM) fuel consumption for the September–October 2015 Indonesian fire
event, as derived herein and including both peat and vegetation consumption based on the method
reported by [12] (whose values are also shown). Also shown are the values provided by the widely
used GFASv1.2 (0.5◦) [33] and GFEDv4.1s (0.25◦) [34] global fire emissions inventories. Data are shown
separated by month and by island. Most of the dry matter consumed in each case is peat (e.g., 305 Tg
of the 358 Tg of DM fuel consumption calculated herein). Uncertainties on the first two estimates of
358 and 387 Tg are calculated as ~30%; see [12].

Dry Matter Fuel Consumption (Tg) *1

Kalimantan Sumatra Total

Sept. Oct. Sept. Oct. September–October

Derived herein, based on [12] and new in situ
gaseous emissions factors 100 122 54 82 358

Values from [12], based on MOPITT CO and
GFAS emissions and previous gaseous EFs 108 132 58 89 387

GFASv1.2 94 95 139 214 541

GFEDv4.1s 208 42 145 66 461

*1 In addition to Kalimantan and Sumatra, [12] identify a far smaller amount of combustion occurring in West
Papua, but representing no more than 5% of the total DM fuel consumption of the 2015 fires.

Both GFAS and GFED use a PM2.5 emissions factor of 9.1 g·kg−1 for both tropical peatlands and
forests, largely based on the EF data included in [54]. This is far lower than every PM2.5 emissions
factor derived herein based on in situ measurements of peatland fire smoke (see Table 4), apart from a
few plumes encountered at location 5. The most recent GFASv1.2 (0.1◦ resolution) and GFEDv4.1s
(0.25◦ resolution) show similar September–October 2015 combined Kalimantan and Sumatra fine
particulate matter (PM2.5) emissions totals, 3.99 Tg and 4.2 Tg respectively (see Figures S2 and S3),
but they also show significant differences in the partitioning between the two months and between the
two islands of Kalimantan and Sumatra. This in part reflects the DM fuel consumption differences
between these inventories discussed in Section 4.1. Our far higher in situ derived EFPM2.5 values
(Section 3.4), along with our updated DM fuel consumptions (Table 6), enables us to provide new
PM2.5 emissions totals, and in addition we can utilize the very high temporal resolution (10-min) fire
radiative power (FRP) data recently available from the Himawari geostationary satellite [40] to fully
resolve the diurnal cycle of these smoke emissions, which can be important when linking them to
atmospheric chemistry transport models (CTMs) [71]. Using the data of Table 4, we derive a mean
peatland EFPM2.5 of 28 ± 6 g·kg−1, calculated as with the carbonaceous gas EFs from a 73% weighting
of pure peat burning and 27% vegetation burning atop peat following [12,54,72]. For non-peatlands
we continue use of the 9.1 ± 3.5 g·kg−1 assumed by GFAS and GFED, following [54]. Assuming
these emissions factors, our final PM2.5 emissions total for the September–October 2015 Indonesian
fires is 9.1 ± 3.2 Tg, two thirds from Kalimantan (Figure 12a,b) and 95% from burning peatlands.
We note that some non-peatland fires were in cleared (non-forest) areas, and since [54] assume EFPM2.5
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of 15 ± 7 g·kg−1 for “land maintenance fires” these may have a higher EFPM2.5 than pure tropical
forest burns. However, substitution of this EF in place of 9.1 ± 3.5 g·kg−1 would elevate our total PM
emissions insignificantly, since our calculations indicate that 95% of the PM2.5 emissions come from
burning peatlands.

Figure 12. Spatial mapping of mean monthly PM2.5 emissions (g·m−2) for Kalimantan (0.05◦ grid cells)
based on geostationary FRP data derived from the Himawari satellite in September and October 2015
using the methods of [40]. Maximum mean emission for a single grid-cell for one month is 5400 g·m−2.
Total PM2.5 emissions for Kalimantan are 5.7 Tg, split almost evenly between the two months as
indicated in figures (a,b). Emissions from Sumatra add a further 3.4 Tg of PM2.5 for September and
October, making a total of 9.1 Tg. (c) Temporal evolution of PM2.5 emission rate on Kalimantan,
as derived from the Himawari FRP measurements, along with (d) atmospheric PM10 concentrations
measured at Palangkaraya, capital of Central Kalimantan (location circled in (a,b)). Gaps represent
temporary loss of measurement capability. Insets show temporal detail for October, with a clear diurnal
cycle shown in both emissions and atmospheric concentrations.
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Himawari FRP data [40] enable the spatio-temporal mapping of the particulate emissions at far
higher detail than hitherto possible, and whereas their broad spatial pattern (Figure 12a,b) is similar to
that reported by GFASv1.2 (Figure A1) and GFEDv4.1s (Figure A2), our 9.1 ± 3.2 Tg PM2.5 emission
total is more than double (~×2.2) of those inventories. Their lower totals are primarily driven by
their assumed EFPM2.5 of 9.1 g·kg−1, irrespective of whether a fire is burning atop peat, which more
than counteracts the fact that both GFASv1.2 and GFEDv4.1s estimate DM fuel consumptions for the
2015 Indonesian fire event to be significantly higher than the 358 Tg upon which our 9.1 ± 3.2 Tg
PM2.5 emissions estimate is based (see Table 6). Retaining instead the GFASv1.2 and GFEDv4.1s DM
totals from Table 6, but using our updated PM2.5 emissions factors, would increase the magnification
of our fine particulate matter emissions estimate over that of the GFED and GFAS values to around
×3. A further global inventory, the Fire Inventory for NCAR (FINN) v2 [73], reports even lower PM
emissions than GFEDv4.1s or GFASv1.2, around 5× lower than our 9.1 Tg. Since FINNv2 was recently
used as the input for a CTM-based study estimating the extent and severity of short-term health
impacts of PM2.5 exposure across Aoutheast Asia (with 6153–17,270 excess mortalities estimated [31])
our significantly higher PM2.5 emissions total suggests a re-appraisal and potential uplift of these
impacts maybe necessary. Using a 50% upscaling of the GFASv1.2 PM2.5 emissions, which brings
them closer (albeit still well below) those of the current work, [26] previously estimated a much higher
excess death total of around 100,000.

4.2. High Temporal Resolution Emissions

Exploring our very high temporal resolution PM2.5 emissions timeseries (Figure 12c), we see
Kalimantans’ smoke particulate emissions rate peaking at more than of 15 tonnes-PM2.5·s−1 in
mid-October 2015, shortly before PM10 measurements in Palangkaraya showed their >3000 µg·m−3

concentration maxima (Figure 12d). This maximum is around ten times the threshold considered
extremely hazardous for health (see Section 1), and while the daily atmospheric PM concentration
cycle recorded at Palangkaraya (Figure 12d) mirrors that seen in the emissions (Figure 12c), they have
differently timed peaks because the atmospheric PM concentrations are driven by meteorology, plume
processing, and aerosol deposition processes, as well as by the PM emissions rates themselves.

Further investigations using the geostationary FRP-based methodology of [40] indicates that
these extreme SE Asian fires show a diurnal cycle peaking generally later in the day than fires
dominating most other tropical forest regions, for example those in parts of South America and tropical
Africa [74–76]. Specifically, the Indonesian fires show a diurnal cycle peaking on average between
16:00 and 18:00 h local solar time (Figure 13), which appears most similar to the peak timing of Brazilian
deforestation fires [74] (where fuel is sometimes piled before burning) and fires in the swamp forests
of southern Africa [76] (which include areas of tropical peat). The 2015 Indonesian fires also seem
to peak significantly later in the day than those seen during more “normal” (non-drought) years in
the same region [11,77]. Much of this anomalous fire timing seems likely to be driven by fires in the
degraded tropical peatlands accessing the dried-out peat substrate even more significantly during
extreme drought than during more “normal” meteorological periods, agreeing with the very significant
amplification of Indonesian fire activity often seen during drought events [11,36,42]. Separating out
our Himawari-derived 2015 fire diurnal cycles by landcover indicates specifically that Indonesia’s
extreme peatland fires (Figure 13a) peak on average ~2 h later in the day than those in non-peat
areas burning under the same general climatological conditions (Figure 13b), and the former also
show a daily (full width, half-height) fire duration almost twice as long. This may reflect the fact that
sub-surface peat combustion, which was seen occurring across very large regions of peatland during
our field campaign (e.g., Figure 2b) and which is described in detail in [9], is likely to be less influenced
by the daily meteorological cycles of wind, relative humidity and air temperature, factors which (along
with ignition timing) typically drive the diurnal variability of surface vegetation fires occurring in
non-peat areas [78].
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Figure 13. (a) Mean (±1σ) fire diurnal cycle for (a) peatlands and (b) non-peatland areas on Kalimantan,
derived from Himawari geostationary satellite FRP data of September and October 2015 according to
the methodology detailed in [40]. Peatland fires have a daytime peak that is wider and occurs later in
the day than in non-peatland areas.

5. Summary and Conclusions

The largest fire events on Earth occur in the deforested and drained tropical peatlands of southeast
Asia. Particularly extreme fires develop in these already more flammable degraded landscapes
during strong El Niño-related droughts, and the fires on Kalimantan and Sumatra (Indonesia) in
September–October 2015 were the greatest such events since the El Niño of 1997–1998 [8,11,12].
The emissions from these fires represent a strong net carbon release to the atmosphere, because their
fuel is primarily fossil carbon held in the peat rather than in aboveground vegetation. Furthermore,
because peat fires show a strong dominance of smoldering rather than flaming combustion, for the same
amount of dry matter burned they tend to emit more carbon monoxide and methane (i.e., have higher
CO and CH4 emissions factors), as well as numerous other gaseous air pollutants. Until very recently
only laboratory-derived emissions factors were available to support emissions calculations for these
globally significant Indonesian peatland fire events, even though their sometimes extreme combustion
conditions (e.g., intense forest burning above peat) can be difficult to replicate. Furthermore, while
the climatological implications of these massive peatland fires have received a great deal of research
attention e.g., [5,7,8], there has been less focus on their human health implications. However, these
are likely to be extremely significant [3], especially as (in addition to gaseous air pollutants) small
diameter particulate matter (PM10 and PM2.5) is also emitted in more significant quantities during
smoldering combustion [20].

Using unique, daily measurements from Indonesia’s air quality monitoring network we have
shown that airborne particulate matter concentrations in parts of Indonesia in rose to levels representing
some of worst sustained air pollution ever recorded, with maximum reported PM10 exceeding
3800 µg·m−3 in the Capital of Central Kalimantan for example. Independent measurements also
show PM2.5 size classes dominating the particulate load, and their smaller diameters mean they are
more concerning for human health [79]. Using new in situ measurements of peat physio-chemical
properties and smoke plume composition, made at the height and loci of Kalimantan’s most fire
affected region, we have derived new carbonaceous trace gas and PM2.5 emissions factors for these
peatland fires, sampling a range of combustion conditions from sub-surface “peat only” fires to intense
forest fires spreading atop burning peat. Combining these, we derive a peatland fire methane emission
factor (7.8 ± 2.3 g·kg−1) very significantly lower than laboratory burns of peat have suggested, and
we use this along with our new peatland EFs of CO (238 ± 36 g·kg−1) and CO2 (1779 ± 55 g·kg−1) to
confirm earlier estimates made by [12] of the quantities of carbonaceous gases released by the 2015
Indonesian fires, including a methane release (3.2 ± 1.2 Tg) lower by around a factor of three than
current global inventories such as GFEDv4.1s, GFASv1.2 and FINNV2 imply. We find tropical peat
carbon content at the fire sites to be higher (610 ± 47 g-C·kg−1) than past emissions studies typically
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assumed, and for some emitted carbonaceous gases this increases our derived EFs over those derived
in recent in situ studies, which generally assumed a lower carbon fraction [12,39]. These new data
enable us to provide a new dry matter (DM) fuel consumption estimate for the fires on Kalimantan
and Sumatra (358 ± 107 Tg, 85% of which is peat), and this is again lower than current global biomass
burning inventories imply. Even when maintaining the higher GFED and GFAS fuel consumptions in
such calculations, our reduced peatland EFCH4 based on in situ measurements of smoke suggests a
total methane release by these fires more than a factor of two lower than these inventories (which use
a EFCH4 that is at or close-to the laboratory derived values).

Our peat sampling shows an O-horizon layer exists only at the visited locations on Kalimantan
that had not experienced fire since the 1997–1998 El Niño, and this layers layer’s light, aerated
structure and significantly lower moisture content compared to the deeper layers appears to indicate
a mechanism by which fire may accelerate from the surface vegetation into the peat. Specifically,
the more easily ignitable O-horizon seems likely to aid combustion taking hold at the surface before
penetrating the underlying, denser, wetter (and more difficult to ignite), but more carbon rich, peat
substrate. Once burning we found the peat to emit particulate matter in great quantities. We find PM2.5

emissions factors, based on our field measurements, far higher than those seen in laboratory tropical
peat burning. We derive an EFPM2.5 of 22.3 ± 8.7 g·kg−1 for smoldering peat only fires measured very
close to source, find even higher PM2.5 emissions factors (44–61 g·kg−1) at sites of vegetation fires atop
burning peat, though these latter measurements had to be made further downwind (maximum of a
few km) due to safety concerns. These “vegetation and peat fire” PM2.5 emissions factors represent
some of the highest seen worldwide, approaching the maxima reported for some US organic soil
burns [69]. Smoldering combustion produces PM mainly via condensation of volatilized organics onto
existing particles and surfaces [20], helping explain why peatland fires produce emissions deficient in
black carbon and whose particulate load is dominated by organic aerosol (OA), and this is the case
even in the mixed vegetation and peat fires. Our in situ data indicate that OA makes up a minimum
of 97% of the overall emitted PM2.5 mass. We reject significant OA production during the period
between the emission and measurement of these downwind-sampled “combined vegetation atop
peat” fire plumes, because field experiments have found that (downwind) dilution generally reduces,
rather increases, primary OA concentrations [56]. Furthermore, while significant lofting (and thus
cooling), of plumes can lead to condensing of gas phase material and thus to PM2.5 concentration
increases [80], this was not a feature of the ground-level ‘vegetation and peat fire’ plumes sampled
here. Therefore, we conclude that their increased EFPM2.5 compared to the “peat only” fires is because
peatland burning incorporating significant surface vegetation combustion can occur in ways that
maximizes the emission of fine particulates. We hypothesize that this could be due to (i) the peat
being partly consumed in higher temperature flaming combustion driven by the surface vegetation
fires, with temperature-related effects on emissions from peat fires already having been noted by [67],
and/or (ii) because the spreading vegetation fire atop the peat enables rapid access to new peat fuel
that is burnt initially at the surface, and that this may in turn maximize PM2.5 emissions factors
by continually generating new areas of surface peat combustion in which particulate release to the
atmosphere is far stronger than that in peat-only fires, which typically propagate below the surface
layer [9] and which may thus not be in direct contact with the open atmosphere. Combing our pure
“sub-surface peat” and “vegetation atop peat” PM2.5 emissions factors, we derive an overall EFPM2.5

for these Indonesian tropical peatland fires of 28 ± 6 g·kg−1, around three times that assumed in
current fire emissions inventories such as GFEDv4.1s, GFASv1.2 and FINN [33,34,73].

Using our updated dry matter (DM) fuel consumption and EFPM2.5 measures, we estimate total
September and October 2015 PM2.5 emissions for fires on Kalimantan and Sumatra to be 2× to 5.5×
higher than those of GFEDv4.1s, GFASv1.2 and FINNv2, and we use geostationary, very high temporal
resolution fire radiative power (FRP) data to illustrate for the first time that the fire diurnal cycle in
these tropical peatland areas is significantly wider and peaks later in the day than in non-peatland
areas subject to the same drought conditions. The long duration, extremely large areas of simultaneous
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burning, the very high fuel consumptions per unit area, and the very high PM2.5 emissions factors
found in these peatlands made these Indonesian fires the greatest wildfire sources of PM2.5 in 2015,
and combining our updated PM2.5 emissions factors with data from the long-term GFAS and GFED
inventories (which stretch back to the early 2000’s) we find such equatorial southeast Asian fires to be
commonly among the top five wildfire PM sources worldwide. Given the conclusion from a recent
Mexico City epidemiological study that a 1 µg·m−3 increase in 24-h PM10 exposure led to 0.24 infant
deaths per 100,000 births [81], we agree with [25,26,31] that the very high particulate matter emissions
and extreme, perhaps almost unprecedented, atmospheric PM loadings seen over parts of Kalimantan
and Sumatra throughout much of September and October 2015 as a result of these fires provides a
serious cause for concern.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/4/495/s1,
Figure S1: Absorbance spectra (350–2500 nm) recorded from dried peat samples collected in three soil layers
(Surface, 0–10 cm and 10–30 cm depth). Figure S2: Monthly mean PM2.5 fire emissions per grid cell unit area
(kg·m−2) as reported by GFASv1.2 for September and October 2015. Figure S3: Monthly mean PM2.5 fire emissions
per 0.25◦ grid cell unit area (kg·m−2) as reported by GFEDv4.1s for September and October 2015.
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Appendix A

Figure A1. Monthly mean PM2.5 emissions per grid cell unit area (kg·m−2) as reported by GFASv1.2
for September and October 2015 based on MODIS FRP, shown at both the original 0.5◦ resolution of [33]
(top row) and the more recent 0.1◦ resolution of GFAS (bottom row). Total monthly PM2.5 emissions
for Sumatra and Kalimantan are indicated and are very similar for both resolution datasets.
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Figure A2. Monthly mean PM2.5 emissions per 0.25◦ grid cell unit area (kg·m−2) as reported by
GFEDv4.1s for September and October 2015 and based on MODIS MCD64A1 burned area data and
fuel consumption modelling, as detailed in [34]. Monthly PM2.5 emissions for Sumatra and Kalimantan
are indicated, which reduce from a total of 4.2 Tg to 3.7 Tg if the effect of the “small fire” boosting used
in GFED4.1s is removed.
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