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A B S T R A C T   

Assessing land-use following deforestation is vital for reducing emissions from deforestation and forest degra
dation. In this paper, for the first time, we assess the potential of spatial, temporal and spatio-temporal deep 
learning methods for large-scale classification of land-use following tropical deforestation using dense satellite 
time series over six years on the pan-tropical scale (incl. Latin America, Africa, and Asia). Based on an extensive 
reference database of six forest to land-use conversion types, we find that the spatio-temporal models achieved a 
substantially higher F1-score accuracies than models that account only for spatial or temporal patterns. Although 
all models performed better when the scope of the problem was limited to a single continent, the spatial models 
were more competitive than the temporal ones in this setting. These results suggest that the spatial patterns of 
land-use within a continent share more commonalities than the temporal patterns and the spatial patterns across 
continents. This work explores the feasibility of extending and complementing previous efforts for characterizing 
follow-up land-use after deforestation at a small-scale via human visual interpretation of high resolution RGB 
imagery. It supports the usage of fast and automated large-scale land-use classification and showcases the value 
of deep learning methods combined with spatio-temporal satellite data to effectively address the complex tasks of 
identifying land-use following deforestation in a scalable and cost effective manner.   

1. Introduction 

Land-use change is the second-largest contributor to greenhouse gas 
(GHG) emissions globally (IPCC, 2013), and in total, 24% of global 
greenhouse gas emissions come from deforestation activities(FAO, 
2014). In response, the United Nations Framework Convention on 
Climate Change (UNFCCC) established a framework to reduce emissions 
from deforestation and forest degradation and enhance carbon stocks 
(REDD+) by result-based payments (UNFCCC, 2017). Before payments 
are made countries are required to show that emissions were reduced 
through a clear methodological and well-documented Measuring, 
Reporting, and Verification system (MRV) (IPCC, 2013; UNFCCC, 2018). 
A robust deforestation monitoring system can also support more infor
mative and effective land-use policies and measures (UNFCCC, 2018) by 
monitoring what land-use activities drive deforestation. These land-use 
activities, i.e., proximate or direct drivers of deforestation (Geist and 

Lambin, 2001), can be assessed using Earth Observation Technologies 
(EOT) to help provide spatially explicit and temporal information on 
land-use (Curtis et al., 2018; De Sy et al., 2015, 2019). However, these 
studies detect land-use following deforestation at coarse thematic, 
spatial and temporal scales or use time-consuming methods (i.e., visual 
interpretation of satellite imagery) which makes these approaches less 
suited for national level operational monitoring. Recent advances in 
Earth Observation (EO), computing technology and deep learning 
methods provide opportunities for automated large-scale assessment of 
land-use following tropical deforestation at more detailed spatial and 
temporal scales. 

The latest advances and investments in Earth Observation Pro
grammes (EOP) for global environmental data acquisitions, such as the 
European Copernicus EOP (Sentinel-1, Sentinel-2A, –2B) and joint 
NASA and U.S. Geological Survey program (Landsat 1–5, 7 & 8), have 
allowed the assessment of global forest cover change (Hansen et al., 
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2010a; Kim, 2010), classification of land cover (Balzter et al., 2015; Cole 
et al., 2018), and the analysis of time series of satellite data to study 
changes on the land surface (Arévalo et al., 2019; Pandey et al., 2018; 
Verbesselt et al., 2010a). The EOP’s are accompanied by free data pol
icies for data retrieval and use (i.e., Landsat, MODIS, Sentinel). The EOP 
provides an opportunity to advance science in monitoring land-use 
essential for REDD+ (Boriah, 2010). On top of that, the increase in the 
spatio-temporal resolution of EO data enables the detection and classi
fication of smaller and more subtle changes on the land surface with 
greater accuracy (Zhang et al., 2019). 

Traditional land-use classification approaches with remote sensing 
images use the standard supervised/unsupervised machine learning 
methods such as K nearest neighbors, maximum likelihood estimators, 
support vector machines, or random forests. This is a mono-temporal 
approach exploiting the spectral aspect of land-use data (Curtis et al., 
2018; Hansen et al., 2010a; Nguyen et al., 2018; Silva et al., 2018). 
However, these methods are not designed to work with time-series data 
nor with pattern recognition of land-use (Arévalo et al., 2019; Comber 
et al., 2016; Curtis et al., 2018; Huang et al., 2018; Mas et al., 2017; 
Pelletier et al., 2019) and, therefore, ignore the temporal and spatial 
dependency which are essential in retaining information to differentiate 
land-uses (Curtis et al., 2018; Castilla and Hay, 2007; Pelletier et al., 
2019). 

Recently there have been advances in computing technology, cloud 
computing, and high-performance computing paralleled with those in 
advanced artificial intelligence (machine learning and, particularly, 
deep learning) algorithms (Helber et al., 2017; Lecun et al., 2015; Luus 
et al., 2015; Marmanis et al., 2016; Neagoe et al., 2012; Tracewski et al., 
2017). Deep learning enables the automatic detection of complex spatial 
and temporal patterns in environmental data such as time series of 
satellite images based on training data (Hughes et al., 2018; Kit and 
Lüdeke, 2013; Minh et al., 2018; Pelletier et al., 2019). In contrast to the 
traditional focus on spectral information in remote sensing imagery, the 
ability to capture spatial-temporal patterns allows the detection and 
differentiation of types of land cover and land-use with closely resem
bling spectral signatures (Comber et al., 2016). Despite the success of 
machine learning and deep learning (Castelluccio et al., 2015; Rußwurm 
and Körner, 2018; Zhang et al., 2019; Zhu et al., 2017) in extracting 
spectral, spatial, and temporal features from remote sensing data, the 
methods are not widely used for large-scale remote sensing analyses. 
However, promising results have been reported on small-scale problem 
applications for satellite image classification, land-cover/land-use 
mapping and land cover/land-use change detection (Castelluccio 
et al., 2015; Helber et al., 2017; Interdonato et al., 2018; Kong et al., 
2018; Liu et al., 2016; Song et al., 2018; Uba, 2016). Additional chal
lenges arise when extrapolating results to a large-scale, as models 
trained on small areas and evaluated over large areas will often not 
perform satisfactorily (Kellenberger et al., 2018; Zhu et al., 2017; Yuan 
et al., 2020). 

Furthermore, the assessment of land-use is often rather generic and 
at coarse levels (Curtis et al., 2018; Hansen et al., 2010b), and does not 
fully differentiate land-use from land-cover (Bp et al., 2015; Campbell 
et al., 2005; Mas et al., 2017; Zhao et al., 2012; Fritz et al., 2017). The 
lack of land-use/cover differentiation generates confusion when forest 
cover change statistics derived from satellite imagery are compared 
directly against land-use statistics reported by governments in their 
national statistics (Curtis et al., 2018). In fact, they are used inter
changeably in many land-cover/use maps. However, land-use describes 
how the land is used in a given location, such as forestry, residential, 
agricultural, industrial, forestry, and recreational, while land-cover re
fers to what is physically on the earth surface such as forests, grasslands, 
or water (Castilla and Hay, 2007). In other words, land-use can contain 
multiple land-covers (Herold et al., 2003; Fritz et al., 2017). Identifying 
land-use with remote sensing is challenging (IPCC, 2013) because we 
measure vegetation indices (VI) for land-cover and greenness and not 
directly use (Hansen et al., 2010b; Mas et al., 2017; van Asselen and 

Verburg, 2012; Verbesselt et al., 2010b; Vogelmann et al., 2012; Nguyen 
et al., 2018). The assessment of land-use can be done via visual inter
pretation, but this is subjective and time-consuming. 

In addition, land-use assessment approaches over regional or global 
scales are still problematic because they do not capture spatial hetero
geneity (Curtis et al., 2018; FAO & JRC, 2012; Hansen et al., 2010b; 
Pandey et al., 2018; Pelletier et al., 2019). Here, the spatial heteroge
neity refers to the variation in the patterns of land-use classes in spatial, 
spectral and spatial domains within and between regions. The hetero
geneity of land-use may be observed as both the intra-regional vari
ability (e.g., diverse patterns of same land-use, i.e. small-scale 
agricultural practice within the country) and the inter-regional vari
ability (e.g., diverse patterns of same land-use i.e. small-scale agricul
tural practice, between the countries or regions) as observed in Fig. 1. In 
land-use classification, this heterogeneity of land-use patterns can result 
in the inability of the training data to represent the diversity of each 
class of the land-use. Not taking into account spatial heterogeneity in
troduces uncertainties and sources of error when evaluating the methods 
over different geographical locations, even if they present similar land- 
use. This results in an increase in uncertainty of the accuracy of land-use 
maps to estimate and measure the national forest emission reductions 
contributions for REDD+ (World Resources Institute, 2016). The critical 
question is whether integrating spatial-temporal information of land-use 
can achieve a reproducible large-scale land-use classification based on 
the diverse geographically sampled data as opposed to traditional ap
proaches, where the sampled data are either relatively small (Olofsson 
et al., 2012), sampled in a non systematic way (Pengra et al., 2015; Fritz 
et al., 2017; Descals et al., 2021), sampled from a one time step (Fritz 
et al., 2017; Irvin et al., 2020), contain relatively few land-use classes 
(Descals et al., 2021; Irvin et al., 2020) or are sampled from small re
gions (Doggart et al., 2020; Irvin et al., 2020). 

While recent advances in EOT, computing technology and deep 
learning methods hold promise for large-scale assessment of land-use 
following deforestation, or Follow-up Land-use (FLU), in the tropics, 
there is a need for new approaches that integrate the spatio-temporal 
information in dense satellite time series with deep learning methods. 
In this work, we therefore assess the potential of several deep learning 
methods for identifying FLU in the tropics using dense satellite time 
series. Specifically, the following two objectives are addressed:  

1. We assess the performance of multiple deep learning approaches on a 
held out test dataset for classifying FLU after tropical deforestation 
using the spatial and temporal information from dense time series of 
satellite imagery.  

2. We use the same procedure to assess the classification performance 
of continental models versus a pan-tropical model. 

We concentrate on the deep neural network architectures that ac
count for either (a) spatial-temporal information, i.e., Hybrid Recurrent 
convolutional neural network, 3D-convolutions, ConvLSTM, and the 
novel CNN + Multi Head Self-Attention model, or (b) only spatial in
formation, i.e., 2D-convolutions, (c) only temporal information, i.e., 
Long short term memory (LSTM). Our main assumption is that the 
choice of model architecture is crucial to increase the classification 
performance on land-use following deforestation. Although some of 
these deep learning models with the exception of CNN + Multi-Head 
Self-Attention, are well-established techniques for remote sensing ap
plications, to the best of our knowledge, we are the first to experiment 
and combine them for large-scale time series analysis of land-use in the 
remote sensing community (Ma et al., 2019; Reichstein et al., 2019; 
Yuan et al., 2020; Zhang et al., 2017; Rußwurm and Körner, 2020). 

2. Method and materials 

The study focuses in the tropical regions of Latin America, Africa, 
and Asia (Fig. 2). The heterogeneity of land-use following deforestation 
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or follow-up land-use (FLU) on these continents makes these regions 
suitable for methodological research on large-scale assessment of land- 
use following deforestation (Müller et al., 2015). 

2.1. Data 

In this study we used two data sources: 1) the ground truth/reference 
data, manually annotated using very high resolution imagery and pro
vided by De Sy et al. (2019), containing the land-use following defor
estation classes and 2) Landsat satellite time series data cubes over the 
same geographical extent. 

2.1.1. Reference data 
We used a large reference dataset containing land-use following 

deforestation from 1990 to 2005 in tropical regions of Latin America, 
Africa and Asia (De Sy et al., 2019). From the reference dataset, only the 
land-use data from 2000 to 2005 were used in this study to match with 
deforested areas from Hansen et al. (2013). The basis for the reference 
dataset is the FAO 2010 global Remote Sensing Survey (FAO FRA-2010 
RSS) which used a systematic sampling design with sampling units 
spaced in a 10 km by 10 km grid on each degree latitude-longitude 
conFLUence point (FAO & JRC, 2012) to assess forest (change). This 
dataset consists of three main land-use classes, which are: forest, other 
wooded land, and other land (FAO & JRC, 2012). De Sy et al. (2015) 

further classified land-use following deforestation into more detailed 
land-use classes (Table 1), through expert knowledge and visual inter
pretation of land-use using publicly available medium to high resolution 
satellite imagery. The definition of each of the FLU classes can be found 
in (De Sy et al., 2019). For this study we focus on 6 land-uses as the 
dominant drivers of deforestation, as indicated in (Table 1), i.e., large- 
scale and small-scale cropland, pasture, mining, tree-crops and other 
land with tree cover. The six selected land-use classes cover 95.0%, 
97.2%, and 93.2% of the total reference dataset for Latin America, Africa 
and Asia respectively. In Fig. 2, we show the spatial distribution of 
reference/ground data used in this study. The reference data are based 
on the forest area loss per follow-up land-use in the pan-tropics for the 
six selected follow-up land-use classes. 

2.1.2. Satellite data 
For this study, we used Landsat 5 and 7 satellite imagery. This im

agery has a spatial resolution of 30 m and a temporal resolution of 16 
days. The Landsat data was chosen as it is the only satellite dataset with 
sufficient spatial and temporal coverage for the entire study period of 
2000 to 2005. Two median composite images (January–June, 
July–December) were collected for each sample location from dense 
Landsat image time series for each year from 2000 to 2005 using Google 
Earth Engine. The collected dataset was filtered for clouds using the 
quality assessment band of Landsat SR data (Google Earth Engine, 

(a) Ethiopia 

(b) Indonesia 

(c) Democratic Republic of Congo 

Fig. 1. Spatial heterogeneity of small-scale cropland land-use pattern within and between countries of (a) Ethiopia, (b) Indonesia and (c) the Democratic Republic of 
Congo - DRC, respectively. The heterogeneity is observed as both intra-variability (e.g., diverse patterns of small-scale agriculture within the country) and the inter- 
variability (e.g., diverse patterns of small scale agriculture between the countries or regions). Example imagery retrieved from Google Earth Engine. 
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2020). Only images which contained cloud cover less than 50% were 
used to create a composite, this made sure we obtained enough images 
as possible but also we didn’t lose more images. For each median 
composite in the time series, the normalized vegetation index (NDVI) 
and the normalized difference moisture index (NDMI), were computed. 
For each year, we collected at least 2 median composite images showing 
different phenological stages and texture, which contributes to differ
entiate FLU. Each composite image consisted of 7 spectral bands (Blue, 
Green, Red, Near-Infrared, Shortwave infrared 1, Thermal-infrared and 
shortwave infrared 2) and two vegetation indices (NDVI and NDMI), 
making a total of 9 bands for each Landsat based image composite in a 
time series collection. Overall every collected dataset from all sampled 
locations in the study area consist of a time series of 12 composites with 
7 spectral bands (plus 2 vegetation indices) from 12-time steps from 
2000 to 2005. 

2.2. Deep learning models for FLU classification 

Six neural network architectures with varying focus on spatial and/ 
or temporal features were tested to characterize FLU using dense time 
series of Landsat imagery:  

a. A two-dimensional convolution neural network (2D CNN), which 
exploits the spatial spectral-correlations of neighboring pixels of 
each image in the time series data (Castelluccio et al., 2015; Huang 
et al., 2018). 

2. A long short-term memory neural network (LSTM), a type of recur
rent neural network (RNN) which focuses on the temporal dynamics 
of the time series data by explicitly controlling the flow of informa
tion through time (Wang et al., 2019; Zhong et al., 2019).  

3. A three-dimensional convolutional neural network (3D CNN), which 
treats the time dimension as an additional spatial dimension and can 
thus exploit spatial-temporal-spectral correlations in the data 
(Kumar et al., 2019; Li et al., 2017; Xu et al., 2018).  

4. A hybrid of 2D-CNN and LSTM, which aims to benefit from the 
exploitation of spatial information by using a 2D-CNN and control
ling the temporal information flow with an LSTM (Hu et al., 2018; 
Yang et al., 2020; Zhu et al., 2020).  

5. A convolutional long short-term memory neural network 
(ConvLSTM), a type of recurrent neural network with internal matrix 
multiplications replaced by convolution operations that can thus 
simultaneously exploit spatial-temporal correlations in the data (Shi 
et al., 2015).  

6. A CNN + Multi-Head Self-Attention model (CNN-MHSA) or CNN- 
Transformer, an attention mechanism which focuses on certain 
parts of the input sequences of images to allow for more flexible 

Table 1 
land-use classes contained in the reference data. The land-use with * symbol 
denotes the land-use selected for our study.  

Main classes subclasses Description 

Agriculture Mixed 
agriculture 

• Mix of agricultural land-uses  

Small-scale 
cropland* 

• Land under cultivation for crops, 
characterized by very small (<0.5 ha) to 
small field sizes (0.5–2 ha)  

Large-scale 
cropland* 

• Land under cultivation for crops, 
characterized by medium (2–20 ha) to large 
(>20 ha) field sizes  

Tree-crops* • Miscellaneous tree-crops (e.g. coffee, palm 
trees), orchards and groves  

Pasture (grazing 
land)* 

• Land used predominantly for grazing; in 
either managed/cultivated (pastures) or 
natural (grazing land) setting; includes 
grazed woodlands 

Infrastructure Urban, 
settlements 

• Residential areas  

Roads, built-up 
areas 

• Transport, industrial and commercial 
infrastructures 

Mining*  • Land used for extractive subsurface and 
surface mining activities (e.g. underground 
and strip mines, quarries and gravel pits), 
including all associated surface 
infrastructure 

Water  • Natural (river, lake etc) or man-made 
water bodies (e.g. reservoirs) 

Other Bare land • Exposed soil, sand, or rocks  
Other land with 
tree cover* 

• Land not classified as forest, spanning 
more than 0.5 ha; with trees higher than 5 m 
and canopy cover of 5%–10%, or trees able 
to reach these thresholds in situ, or with a 
combined cover of shrubs, bushes and trees 
above 10%. It does not include land that is 
predominantly under agricultural or urban 
land-use.  

Grass and 
herbaceous 

• Land covered with (natural) herbaceous 
vegetation or grasses  

Wetlands • Areas of natural vegetation growing in 
shallow water or seasonally flooded 
environments. This category includes 
Marshes, swamps, and bogs. 

Unknown land- 
use  

• All land that cannot be classified (e.g. due 
to low resolution imagery)  

Fig. 2. Shows the spatial distribution of the reference data on land-use following deforestation across the pan-tropics for the six selected FLU classes. The size of each 
circle represents the forest loss area (in ha), and the colored pies within the circle represent the proportion of land-use following deforestation. The grey-lined 
countries are study area countries. 
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interactions between the different time steps, applied in conjunction 
with a CNN feature extractor (Bazi et al., 2021; Rußwurm and 
Körner, 2020). 

Implementation details for each model are discussed in the following 
section and summarized in Table. 2. The diagrams of individual model 
architectures are provided in appendix A. 

2.3. Implementation details 

The hyper-parameters used in these models were chosen based on 
the F1-score performance on a randomly chosen validation set consist
ing of 10% of the data. The dataset for each continent was split three 
times into training 75%, validation 10%, and 15% testing subsets for 3- 
fold cross-validation (Fig. 3). In order to select the model parameters 
(see below Table 2), we use Bayesian optimization using one of the folds 
(see details in Appendix B), in which the models have been trained on 
the training set and the best-performing parameters for each model type 
(2D-CNN, LSTM,CNN-LSTM, 3D-CNN, ConvLSTM, and CNN-MHSA) 
have been selected based on the accuracy achieved on the validation 
set. For each run, the final model was then evaluated on the held-out test 
set. The accuracies reported in this article are the averages and standard 
deviations on the test sets over the three folds. The final assignments of 
best parameters are reported in Table 2 (the same assignment was used 
for each of the three runs mentioned above). 

All models were implemented by using the Keras library and Ten
sorFlow as back-end. All network architectures were trained for 30 
epochs with a batch size of 512. All convolutional layers were preceded 
by a padding operation that ensured that the spatial extent of the output 
stayed the same as the input and followed by a ReLU non-linearity 
(Table 2). Batch normalization was used to normalize the features in 
the second convolutional and the following two dense layers, while a 
dropout rate of 0.1 was used to regularize the second convolutional layer 
and third dense layer. All models were optimized by using Stochastic 

Gradient Descent (SGD) with a learning rate of 10− 4, learning rate decay 
of 3.3 ⋅ 10− 6 at each iteration, and momentum of 0.9. The optimized loss 
was a multi-class cross-entropy between the post-softmax scores and the 
one-hot label corresponding to the class of the central pixel of the patch. 
All models are designed to receive input tensors of shape (12 time steps 
× 9 width × 9 height × 9 bands) and to predict the FLU class of the 
central pixel of every data cube, such that the output is always a vector 
with the six scores, one per FLU class, followed by a softmax activation 
function. 

2.3.1. 2D Convolutional Neural Network (2D-CNN) 
We use a six-layer 2D-CNN classification architecture applied to each 

(9 width × 9 height × 9 bands) temporal slice of the input tensor, with 
shared weights. The six layers of the 2D-CNN consists of 32, 32, 64, 64, 
128, 128 filters respectively, all with kernel size 3 × 3 and a stride of 1. A 
2 × 2 max-pooling operation is applied on the second and fourth 
convolution layers. Each convolution operation is followed by a rectified 
linear unit (ReLU) activation function and batch normalization. These 
CNNs are wrapped inside a TimeDistributed layer in Keras that allows 
for sequential operations to every 9 width × 9 height × 9 bands image in 
a time series. The resulting feature maps are concatenated and then 
flattened into a vector of size 6144, followed by three linear layers with 
1024, 512, and 6 neurons to provide FLU class predictions. 

2.3.2. Long Short-Term Memory Recurrent Neural Network (LSTM) 
Designed to control the flow of time-series information over arbi

trarily long or short time intervals in sequential data, the LSTM model 
was used to leverage the temporal patterns in the time series input that 
are relevant to produce the final labels of FLU. The LSTM model was 
optimized by using two LSTM layers with 32, and 128 units respectively, 
to extract relevant non-linear temporal dependencies present in the 
remote sensing time series. The input shape for the LSTM layer was (12 
time steps × 729 pixels) feature vectors flattened over 9 width × 9 
height × 9 bands images. The LSTM layer was used jointly with three 
fully connected layers of size 1024, 512 and 6, batch normalization, and 
dropout of 0.1. 

2.3.3. 3D Convolutional Neural Network (3D-CNN) 
The 3D-CNN model treats the time series data as volumetric data by 

extracting features in three dimensions, one temporal and two spatial. 
We used an input image patches of size (12 time steps × 9 width × 9 

Table 2 
Architecture of 2D-CNN, LSTM, 3D-CNN, 2D-CNN-LSTM, ConvLSTM, and CNN- 
MHSA model.  

Parameters Model Type and Dimensions 

2D- 
CNN 

LSTM 3D- 
CNN 

2D- 
CNN- 
LSTM 

ConvLSTM CNN- 
MHSA 

Input 
shape 

12 × 9 
× 9 × 9 

12 ×
729 

12 × 9 
× 9 × 9 

12 × 9 
× 9 × 9 

12 × 9 × 9 
× 9 

12 × 9 
× 9 × 9 

No. Conv 
layers 

6 – 6 6 6 6 

No. filter 32, 32, 
64, 64, 
128, 
128 

– 32, 32, 
64, 64, 
128, 
128 

32, 32, 
64, 64, 
128, 
128 

32, 64, 
128 

32, 32, 
64, 64, 
128, 
128 

Filter size 3 × 3 – 3 × 3 
× 3 

3 × 3 3 × 3 3 × 3 

Padding same – same same same same 
Pool size 2 × 2 – 2 × 2 

× 2 
2 × 2 1 × 2 × 2 2 × 2 

Strides 1 × 1 – 1 × 1 
× 1 

1 × 1 1 × 1 1 × 1 

LSTM 
Units 

– 32, 
128 

– 32, 128 – – 

No. Dense 
layer 

2 2 2 2 2 2 

Learning 
rate 

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Hidden 
dims 

– – – – – 128 

Hidden 
layer 

– – – – – 32 

No. of 
heads 

– – – – – 4 

No. Classes – – – – – 6  

Fig. 3. The percentage of pixels per FLU for the training, validation, and test 
sets of one of the random splits over the full tropical dataset. Where LSCP, other 
LWTC, and SSCP stands for large-scale cropland, Other land with tree cover, 
and small-scale cropland, respectively. 
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height × 9 bands). The filter size of (3 × 3 × 3) was used to convolve in 
all spatial and temporal dimensions in all convolution layers. The 
resulting feature maps from the convolution layers are concatenated and 
then flattened into a vector of size 1536, followed by three linear layers 
with 1024, 512 and 6 neurons. 

2.3.4. Hybrid CNN-LSTM 
As an alternative to the 3D-CNN to account for spatial-temporal 

patterns in the imagery, we used an LSTM that resorts to convolu
tional filters in order to also account for spatial patterns. At each of the 
12 time steps, a 2D-CNN is used to extract a feature vector of size 32, 64, 
128 from the corresponding 9 width × 9 height × 9 bands image patch. 
A two-layer LSTM module then receives these vectors sequentially, 
keeping a state vector of size 12. This architecture enabled our model to 
extract spatial features associated with each FLU from CNN layers, then 
cascading the features into the LSTM layer, which extracted the non- 
linear temporal dependencies present in the remote sensing time se
ries. Similarly to the 2D-CNN and LSTM methods, after the LSTM layer, a 
fully connected layer, dropout and batch normalization. 

2.3.5. ConvLSTM 
We use a ConvLSTM network to map FLU using spatial-temporal 

features from the input sequence of satellite images of size 12 time 
steps × 9 width × 9 height × 9 bands. The first part of the network 
includes three ConvLSTM layers followed by batch normalization and 
max pooling layers. The ConvLSTM layers include 32, 64, and 128 fil
ters, respectively, with a kernel size of 3 × 3 used to perform convolu
tions. Finally, max-pooling with pooling window size of 2 × 2 is used to 
reduce the size of the output ConvLSTM features. The output of the last 
ConvLSTM layer is followed by three fully-connected layers with 128, 
64, and 6 neurons, respectively. 

2.3.6. CNN Multi-Head Self-Attention 
Is another spatial-temporal model comprising a hybrid network of 

CNN and Multi Head self-attention block. The CNN block is used to 
determine spatial features and the self-attention block to determine 
temporal features from the CNN layer. The input data has a sequence of 
image of size 12 time steps × 9 width × 9 height × 9 bands. The first 
block of the network includes six convolutional layers of fiter size 32, 32, 
64, 64, 128, and 128 followed by ReLU activation function, and batch 
normalization. Max pooling layers of pool size 2 × 2 is applied on the 
second and fourth convolution. The kernel size of 3 × 3 used to perform 
convolution operation to determine spatial features respectively. Finally 
the convolution operation is followed by the global average pooling 
operation. 

The second block of the network includes the transformer block 
which encodes features from the CNN block with 4 attention heads, 128 
hidden dimension, and 32 hidden layer size in the feed forward inside 
the transformer. The transformer block is followed by global average 
pooling which takes the mean across all time steps and feed into 2 dense 
layers. 

2.4. Evaluation of performance deep learning models 

The performamce of the deep learning models in classifying the FLU 
was evaluated using a held out test set and following a 3-fold strategy. 
The standard error of the F1-score on test set was computed as σx =

σ/
̅̅̅
n

√
, where σx is the standard error, σ standard deviation and n = 3 is 

the number of test F1-scores. The evaluation metrics computed were the 
classwise F1-scores, micro-average of F1-scores and macro-average of 
F1-scores. The F1-score is the harmonic mean of precision and recall, F1 
= 2(P * R)/(P + R) (Rußwurm and Körner, 2017). The precision, P = TP/ 
(TP + FP), is a measure of result relevancy, while recall, R = TP/(TP +
FN), is a measure of how many relevant results are returned.. TP, FP, and 
FN stands for the number of true positives, false positives, and false 
negatives of each of the predicted FLU classes. In addition, the confusion 

matrix of the predicted samples and true samples were computed using 
the unseen test set. We used the F1-score of each class as an indicator of 
the model’s capability to identify each single class of FLU. At the same 
time, the micro-average and macro-average of F1-score was used as an 
indicator of the general classification capability of the model (Zhang 
et al., 2019; Pan et al., 2017). The macro-average of the F1-score is the 
average of all classwise F1-scores and covers class imbalance of each 
class, giving more importance to rare classes (Johnson and Khoshgof
taar, 2019; Pan et al., 2017). The micro-average F1-score computes the 
aggregated contribution of all classes by using precision and recall 
values averaged across all samples. This puts emphasis on the more 
abundant classes in the data, since it gives each sample the same 
importance (Pan et al., 2017). 

3. Results 

In this chapter, we present the classification results using spatial, 
temporal, and spatio-temporal models for identifying the FLU in the pan- 
tropics (namely 2D-CNN, LSTM, 3D-CNN,Hybrid CNN-LSTM, 
ConvLSTM, and CNN-MHSA). In the following sections we present the 
FLU classification results for the continental models (Section 3.1) and for 
the pan-tropical models (Section 3.2). Finally, in Section 3.3 we present 
a spatial comparison of predicted versus reference dominant FLU per 
sample location using the best continental models and pan-tropical 
model from section 3.1, and 3.2. 

3.1. Classification results – Continental models 

The results in Fig. 4 show the per-class F1-scores, micro-averaged F1- 
score and macro-averaged F1-score for the six deep learning methods, 
both for the continental and pan-tropical models. All methods obtain 
comparable levels of accuracy in the contenental setting except for the 
LSTM, which tends to trail the other methods by a large margin. The 2D- 
CNN performs almost as well as the hybrid spatio-temporal methods 
(Fig. 4). 

In Fig. 5(a), 5(b), 5(c) and 5(d) we show the confusion matrix for the 
FLU’s classification of one of the best performing model (Hybrid CNN- 
LSTM) over Latin America, Africa, Asia and for full pan-tropical test 
datasets, respectively. For Latin America, there is high recall rate of over 
78% for large-scale cropland, 90% pasture, and 91% mining. Other 
classes such as small-scale cropland, tree-crops and other land with tree 
cover attained low recall rate of over 45%, 24%, 26% respectively. Most 
of the small-scale cropland and other land with tree cover tends to be 
confused with the pasture while tree-crops tend to be confused with 
other land with tree cover as in Fig. 5(a). In Africa (Fig. 5(b)), pasture 
and tree-crops tend to be confused with small-scale cropland (55%, 
38%). In Asia (Fig. 5(c)), almost every FLU class has a recall rate higher 
than 80% with the exception of tree-crops (54%) which tends to be 
confused with SSCP (26%) and other land with tree cover (19%). 

3.2. Classification result – pan-tropical model 

Unlike in the continental setting, the Hybrid CNN-LSTM, ConvLSTM 
and CNN-MHSA outperform all the other methods in the pan-tropical 
setting by a substantial margin, as shown in Fig. 4. The pan-tropical 
Hybrid CNN-LSTM, and CNN-MHSA model reached a micro-average 
F1-score of (58%, 66%) and a macro-average F1-score of (53%, 61%). 
Among all the follow-up land-use types, larger-scale cropland (42%), 
mining (96%), small-scale cropland (95%) and other land with tree 
cover (75%) are the most distinguishable FLUs (Fig. 5(d)). Larger-scale 
cropland, pasture, tree-crops and other land with tree cover are some 
likely to be confused with small-scale cropland by (30%, 62%, 87%, 
24%), respectively. Larger-scale cropland is also confused with pasture 
(22%), while pasture is confused with other land with tree cover (11%). 
The pan-tropical model’s confusions are similar to the continental 
models confusion, where tree-crops in Latin America and Asia is the 

R.N. Masolele et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 264 (2021) 112600

7

Fig. 4. F1-scores of FLU classification (in percentages) for deep learning methods for continental and pan-tropical models for (a) Latin America, (b) Africa, (c) Asia, 
and (d) pan-tropics, respectively. LSCP stands for large-scale cropland, SSCP for small-scale cropland, and Other LWTC for other land with tree cover. In brackets are 
the percentages of each FLU class present on each continent. The error bars are the standard deviation on F1-scores. 
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most misclassified follow-up land-use class, reaching the F1-score of 
(10%) (Fig. 5(d)). Similarly, the tree-crops is the follow-up land-use class 
with the lowest recall rate in both continental and pan-tropical models. 
This can be attributed to the spatial scale and spectral similarity of tree- 
crops with small-scale cropland and large-scale cropland across the 
tropics. 

3.3. Comparison of dominant FLU per sample location using the hybrid 
CNN-LSTM method 

Using one of the best performing spatio-temporal methods in the 
pan-tropical setting (Hybrid CNN-LSTM), we compare the most domi
nant FLU per sample location for the predicted and reference FLU 
dataset, for both the continental (Figs. 6(a) and pan-tropical models 
(Figs. 6(b). In Latin America, for the continental models’ predictions 
(Fig. 6a), pasture and large-scale cropland are the most dominant FLUs 
in both prediction and reference datasets. For sample locations in Brazil, 
Paraguay, Bolivia, and Uruguay these two dominant FLUs are mostly 
similar for predicted and reference FLU. However, we also observe that 
large-scale cropland tends to be confused with pasture, particularly in 
Argentina, Paraguay, northern Mexico, and eastern Brazil (mainly in the 
state of Bahia). Other confusions are also observed in Mexico between 
other land with tree cover and small-scale cropland as well as other land 
with tree cover and pasture (Figs. 6(a). 

In Africa, small-scale cropland is the most dominant driver in both 
prediction versus reference dataset (Fig. 6(a)). For small-scale cropland, 
predicted dominant FLU matches well in parts of central Africa (i.e., 
Democratic Republic of Congo -DRC, Congo), southern Zimbabwe and 
Mozambique, Ethiopia, and parts of West Africa (i.e., Nigeria, 
Cameroon, and Cote d’Ivoire). Nevertheless, we also observe confusion 
between other land with tree cover and small-scale cropland in central 
Mozambique, northern Zambia, and Angola. Another notable confusion 
is between pasture and other land with tree cover as well as small-scale 
cropland and pasture in Tanzania, Kenya, and some parts of West Africa. 

In Asia, tree-crops and small-scale cropland tend to be the most 
dominant driver in both prediction versus reference dataset (Figs. 6(a). 
Tree-crops are predicted well as dominant FLU in Malaysia and 
Indonesia. Small-scale cropland are predicted well as dominant FLU in 
central parts of Myanmar, some parts of Thailand, Laos, and Vietnam. 
On the other hand, in parts of Thailand, Cambodia, India, and Indonesia 
there is mismatch between predicted and reference dominant FLU as 
small-scale cropland, pasture, and tree-crops tend to be confused with 
other land with tree cover. 

For the pan-tropical model similar spatial patterns of the reference 
versus predicted dominant FLU could be observed as in the continental 
models’ prediction results (Figs. 6(a) for Latin America and Asia. In Africa, 
larger-scale cropland was over-predicted as dominant FLU at the expense 
of small-scale cropland, especially in parts of west and east Africa. 

Fig. 5. The confusion matrix showing the percentage of correct predicted and false predicted FLU’s using one of the spatio-temporal deep learning method with 
highest score (CNN-LSTM) for (a) Latin America, (b) Africa, (c) Asia, and (d) pan-tropics, respectively. LSCP stands for large-scale cropland, SSCP for small-scale 
cropland, and Other LWTC for other land with tree cover. 
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3.4. Computational considerations 

In terms of computation time, the optimal architectures for LSTM 
and ConvLSTM resulted in more computationally intensive models at 
training time compared to the other four models (Table 3). This can be 
due to the sequential feed forward and back propagation between hid
den vectors of each timesteps, since the subsequent steps in LSTM and 
ConvLSTM cells depends on previous ones resulting in more time and 
computational resource demand. This is different from other models 
such as 2D-CNN, 3D-CNN and CNN-MHSA where the feature computa
tions happen in parallel. In the CNN-LSTM the CNN part is also 

computed in parallel, providing a better image representation than the 
LSTM without a CNN feature extractor, resulting in a more efficient 
architecture. There were only marginal differences in testing time be
tween the models. This is useful, as, in the future, we can re-use the 
saved deep learning models when making predictions of FLU on recent 
deforested locations. Thus, there will be no need to re-train the model 
from scratch (Castelluccio et al., 2015). All experiments were completed 
in a secured cloud-based computing environment (SEPAL 2.0) that is 
part of the Amazon cloud with instance type g8, NVIDIA Tesla M60 GPU 
32GB RAM. 

Fig. 6. Dominant follow-up land-use for each sample location for prediction and reference FLU dataset for (a) continental models (CNN-LSTM), and (b) pan-tropical 
model (CNN-LSTM). Each circle represents the dominant FLU for a sample location, with the left half of the circle showing the predicted dominant FLU and the right 
half showing the reference dominant FLU. Best viewed in the digital version and by zooming in. 

Table 3 
The training time and test time in minutes (m) for Latin America, Africa, and Asia datasets using 2D-CNN, LSTM, 3D-CNN, ConvLSTM, 2D-CNN-LSTM and 2D-CNN- 
Multi-Head Self-Attention methods.  

*Study Regions 2D-CNN LSTM 3D-CNN ConvLSTM CNN-LSTM CNN-MHSA 

Train(m) Test(m) Train(m) Test(m) Train(m) Test(m) Train(m) Test(m) Train(m) Test(m) Train(m) Test(m) 

Latin America 113.13 3.26 212.58 1.45 115.39 4.55 433.23 24.50 112.30 3.37 108.43 3.29 
Africa 62.5 3.52 149.72 1.56 66.5 5.32 346.5 26.51 66.17 4.5 152.5 3.44 
Asia 67.5 1.18 212.5 0.84 84.5 1.52 343.33 9.26 86.1 1.23 175.55 1.16  
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4. Discussion 

The scope of this work was designed to evaluate the use of different 
spatio-temporal deep learning models for classifying land-use following 
deforestation at a large scale in continental Latin America, Africa, and 
Asia. Large-scale experiments were conducted on a real-world dataset 
acquired from freely available time series of Landsat satellite data 
(2000–2005) together with reference data provided by FAO 2010 global 
Remote Sensing Survey (?). The results from our experiments (in Sections. 
3.1, 3.2) have shown that simultaneously accounting for spatial and 
temporal patterns in the model design decisions results in better perfor
mances compared to models which by design can solely rely only on 
spectral, spatial (2D-CNN) or temporal information (LSTM) (Zhang et al., 
2019). The higher accuracies attained by the spatio-temporal methods 
confirms that 2D-CNN (spatial), LSTM (temporal), methods alone are less 
able to differentiate the FLUs. We also observed that the 2D-CNN achieved 
higher classification performance on the continental scale compared to the 
LSTM, as seen in Fig. 4(a), 4(b) and 4(c). This shows that spatial patterns of 
land-use are more useful for land-use characterization than temporal ones 
when considering the problem at the regional level. This may indicate a 
higher level of heterogeneity in terms of the temporal patterns that 
characterize each FLU, possibly due to regional differences in seasonality 
and land-use practices. The performance of all models in identifying tree- 
crops and other land with tree cover in Latin America and Asia, as well as 
pasture in Africa, is relatively low compared to other FLU classes, also 
suggesting a more heterogeneous spatio-temporal pattern in these cases. 
On the other hand, pasture achieves above average performance in Latin 
America and Asia, even though in the latter it is a minority class, sug
gesting that more homogeneous spatial patterns are associated with 
pasture in these continents than in Africa. 

Looking at predicted versus reference dominant follow-up land-use 
(Figs. 6(a) and 6(b)), some spatial patterns could be observed. In Latin 
America, we do not see as much confusion in the so-called arc of 
deforestation (edge of Amazon forest) compared to the region more to 
the south, where the dominant FLUs (pasture and large-scale crop
land) are more established. This might be related to the fact that, over 
time, the extensively managed large-scale cropland tends to be used as 
pastures during one or two rotational cycles, thus exhibiting a similar 
texture and spatial arrangement compared to newly established 
pasture/large-scale cropland in the arc of deforestation (Müller et al., 
2015). Another spatial pattern of confusion is observed in eastern and 
mid-southern Africa, where most small-scale cropland and pasture 
tend to be confused with other land with tree cover. The confusion 
may arise from the fact that both pasture, small-scale cropland, and 
other land with tree cover are characterized by savanna and shrubland 
vegetation types and have no clear distinct spatial and temporal pat
terns to make them distinguishable, making it even challenging with 
visual identification (Müller et al., 2015). Another reason for this 
confusion can be attributed to the confidence in reference data, i.e., 
some samples of reference data used in our study from visual inter
pretation had low confidence level of belonging to the referenced 
class, which might have contributed to low performance of the model 
(De Sy et al., 2019) in these areas. 

Overall, the Hybrid CNN-LSTM, ConvLSTM and CNN-MHSA models 
achieved better classification accuracies compared to the 2D-CNN, 
LSTM and 3D-CNN in the pan-tropical setting. This is in spite of the 
cloud cover affecting parts of the data. While other studies focus on 
filtering out cloudy data (Zhang et al., 2019) or on exploiting partly 
cloudy images (Oehmcke et al., 2019), our results suggest that models 
making explicit use of spatio-temporal patterns, in particular those using 
attention-based mechanisms such as CNN-MHSA, are able to cope with 
these high levels of cloud coverage. The observation that explicitly ac
counting for both spatial and temporal patterns in the data boosts the 
generalization performance is in line with the results of Zhong et al. 
(2019), who use a multi-temporal deep neural network for a classifica
tion task, and the Joint Deep Learning (JDL) model of Zhang et al. 

(2019), which incorporates a multilayer perceptron (MLP) and con
volutional neural network (CNN) for land cover and land-use classifi
cation. The approaches in the Zhang et al. (2019) are methodologically 
closest to the Hybrid CNN-LSTM and CNN-MHSA models used in this 
study and are comparable with our setting in terms of the type of land- 
use data used. However, their relatively small study area (Southampton 
and Manchester), together with their image data type (aerial photos), 
hinders a direct comparison. Indeed, one of the main contributions of 
this work is going beyond small-scale benchmarking tasks (Castelluccio 
et al., 2015; Li et al., 2018; Zhang et al., 2019; Doggart et al., 2020; Irvin 
et al., 2020). Also (Doggart et al., 2020; Irvin et al., 2020; Descals et al., 
2021) achieved relatively higher accuracies compared to our study, 
although their studies were country based or covered fewer FLU classes. 
Overall, in all three study areas (Latin America, Africa, and Asia), the 
hybrid CNN-LSTM, ConvLSTM and CNN-MHSA models yielded the best 
results, thus making the use of these models for identifying the FLU in 
the pan-tropical more promising by reducing the work of using human 
interpreters in identifying land-use over large areas. 

It is also important to note that the deep learning approaches in this 
study were tested and evaluated on data limited to the sample locations 
and dates in De Sy et al. (2019). Nevertheless, the deep learning model 
evaluated in this study could be applied to monitor land-use following 
deforestation wall-to-wall and for more recent time periods. Given the 
current and expected future availability of high resolution and accurate 
global deforestation data, these methods could be applied following 
open-source global deforestation data such as the Hansen et al. (2013) 
global forest loss and RADD alerts (Reiche et al., 2021) or to national 
deforestation data in the context of national forest monitoring systems. 
These provide an opportunity to implement the proposed methods to 
identify the land-use following deforestation in deforested areas while 
masking out non-deforestation areas using the updated forest loss layers. 
Relying on existing deforestation data makes the task of detecting land- 
use following deforestation at large-scale more tractable without 
compromising its applicability. 

In addition, this study further validates that large-scale land-use 
classification tasks can be accomplished without the necessity of using 
spatio-temporal handcrafted features (expert knowledge) to account for 
spatio-temporal dependencies of land-use as in traditional machine 
learning models, i.e., random forests or support vector machines (Ma 
et al., 2019; Reichstein et al., 2019; Zhang et al., 2019; Zhu et al., 2017). 
Better classification results of deep learning versus traditional machine 
learning in terms of classification accuracy have also been obtained in 
(Huang et al., 2018; Zhang et al., 2019). Besides its success, technical 
challenges remain, such as (1) limited model interpretability due to lack 
of direct causal relationship between inputs and outputs, i.e., in iden
tifying important and most useful variable for the classification problem 
(2) high computational requirements due to an increase in data volume 
as a result of an increase in the number of features and dimensions 
extracted by the models during the computational stage, resulting to 
higher training time and RAM requirement or usage, (3) high demand of 
reference data, caused by intraclass variability (heterogeneity) (Reich
stein et al., 2019; Zhu et al., 2017). According to Reichstein et al. (2019), 
the possible challenge of deep learning models when working with 
heterogeneous data is that they may work well during training and on 
test datasets but perform poorer when extrapolating to other regions 
outside their valid domain. Despite these challenges, the deep learning 
field is still growing and has achieved better classification accuracies 
when compared to other traditional models (Zhang et al., 2019; Zhao 
and Du, 2016). Swift advancement are expected in the near future in the 
field of remote sensing, especially through the use of transfer learning 
and self-supervised learning (Zhu et al., 2017) for large-scale classifi
cation problems. For future work, we plan to expand our analysis to 
predict, validate, and monitor changes in land-use at the continental 
level while leveraging the pan-tropical data through meta-learning 
(Tseng et al., 2021; Rußwurm et al., 2020). 
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5. Conclusion 

We have explored the potential of using spatio-temporal deep 
learning models for large-scale classification of land-use following 
deforestation using time series of satellite (Landsat) images. Six deep 
learning models were considered in this study, the 2D-CNN, LSTM, 3D- 
CNN, Hybrid CNN-LSTM, ConvLSTM, and CNN-MHSA. The models were 
evaluated in the tropical regions of Latin America, Africa, and Asia as 
continental models and pan-tropical model. We found that, for most 
land-use classes, the complementary spatio-temporal information 
extracted by the spatial-temporal models (Hybrid CNN-LSTM, 3D-CNN, 
ConvLSTM, CNN-MHSA) from the time series of Landsat images 
improved the accuracy of the model in classifying the FLU by a signifi
cant margin compared to the 2D-CNN and LSTM, which are designed to 
focus only on spatial or temporal features, respectively. 

Nevertheless, the FLU classification from Landsat satellite imagery 
remains a challenging task due to the existence of spatial heterogeneity 
and spatio-temporal variability of the FLU over large-scale assessments. 
In some areas, the classification challenges were particularly caused by 
clouds and shadows that cover most tropical areas of Africa and Asia. 
Yet, the evaluated spatio-temporal models, were able to distinguish the 
FLU in most of these areas, particularly when trained on regional data. 

We also found that models focusing on spatial patterns only per
formed competitively in the continental setting but not in the pan- 
tropical one, suggesting that land-use types within a region are more 
readily characterized by their spatial patterns than their temporal 
signature. This effect disappears at the pan-tropical level, pointing at 
different spatial patterns across the tropics. Indeed, this is the setting 
were it was most advantageous to use spatio-temporal models and, 
particularly, the attention-based CNN-MHSA. We hypothesize that the 
arbitrary temporal interactions allowed by attention-based models 
provide an edge against the noise derived from the high cloud cover 
characteristic of the tropics. 

Therefore, given the size and coverage of this study, this work could 
be particularly useful for large-scale forest and land-use change moni
toring in the context of REDD+, the global stocktake for the Paris 

Agreement and the Sustainable Development Goals. In this paper we 
address challenges associated with large-scale FLU assessments in the 
pan-tropics such as the heterogeneity of land-uses, and identifying land- 
use instead of just land cover. Our methodology can support a more 
detailed spatial and temporal assessment of where forests are lost, and 
the land-use activities driving it. This will allow targeting of REDD+
mitigation efforts toward specific proximate deforestation drivers in 
order to achieve more impact. Our approach could also be adopted for 
national forest monitoring systems as it uses open-source data and 
platforms, and can be calibrated with local or national data. Our method 
could be further developed toward more frequent and wall-to-wall 
monitoring of land-use following deforestation to identify hotspots 
and local patterns of land-use change. Other data source such as recent 
forest loss data and other satellite sources (e.g. high resolution imagery, 
radar data) could be included. 
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Appendix A. Diagrams of individual deep learning model architectures
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Fig. 7. Schematic view of our convolution network. Time 1 to Time 12 are the tensors input along the temporal dimension each of size 9 × 9 × 9. The colors 
represents, light red = Input images, light blue = Convolution operations, light grey = MaxPooling operation, blue = flatten operation, light green = feed forward 
network and cyan = output layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  

R.N. Masolele et al.                                                                                                                                                                                                                            

http://www.cifor.org/gcs


Remote Sensing of Environment 264 (2021) 112600

12

LSTMLSTM LSTM

Time 1
All bands

Time 2
All bands

Time 12
All bands

Softmax
(6)Dense

(512)Dense
(1024)

Fig. 8. Schematic view of our long-short term memory network.The colors represents, light red = Input array, magenta = LSTM cells, light green = feed forward 
network and cyan = output layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ConvLSTM ConvLSTM ConvLSTM

Max Pool Max Pool Max Pool

ConvLSTM ConvLSTM ConvLSTM

Dense
(64)

Softmax
(6)(64

Dense
(128)

Time 1
All bands

Time 2
All bands

Time  12
All bands

D
(Flatten

ConvLSTM ConvLSTM ConvLSTM

Max Pool Max Pool Max Pool

9x9x9

32x4x4

32x9x9

64x4x4

64x2x2

128x2x2

Input Input Input

Fig. 9. Schematic view of our ConvLSTM network. The colors represents, light red = Input images, light blue = Convolution operations, light grey = MaxPooling 
operation, blue = flatten operation, light green = feed forward network and cyan = output layer. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)       
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Fig. 12. Schematic view of our 3D convolution network. The input tensors along the spatial and temporal dimension are of size 12 × 9 × 9 × 9. The colors represents, 
light red = Input images, light blue = Convolution operations, light grey = MaxPooling operation, blue = flatten operation, light green = feed forward network and 
cyan = output layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Appendix B. Hyper-parameter optimization using Bayesian optimization 

We used Bayesian optimization from the scikit-optimize package (Gilles and Manoj, 2021) to find the best possible set of hyper-parameters that 
gives us high performance of the model on validation data. A total of 20 calls or runs was used to optimize the hyper-parameters Fig. 13. For most of 
the involved model hyper-parameters, a search space of parameters ranging from learning rate ({2− 6,…,2− 2}), number of filters ({16,…,128}), 
number of dense layers ({1,…,3}), number of dense nodes ({64,…,1024}), number of LSTM units ({32,…,128}), number of heads ({3,…,8}) have 
been used. However, as expected, the learning rate had significant impact on the validation accuracies compared to other hyper-parameters, refer to 
Fig. 14. In Fig. 15 we also show the sample distributions for each of the hyper-parameters during the Bayesian optimization and the order in which the 
samples were taken.

Fig. 13. The view of the progress of the hyper-parameter optimization on the validation data over 20 calls. The X-axis shows the number of calls and y-axis the 
minimization, or the convergence trace over n calls.  
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Fig. 14. The Partial Dependence plot showing a matrix-plot of all combinations of searched hyper-parameters during Bayesian optimization. This shows how the 
approximated fitness value changes when we are varying two dimensions simultaneously. The top diagonal subplots shows the influence of a single dimension on the 
accuracy. For each sub-plot the blue and yellow regions shows areas that gives us low and high performance hyper-parameters. The black dots show where the 
optimizer has sampled the hyper-parameter and the red dot shows the best hyper-parameters found. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)  
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Fig. 15. The Matrix-plot. The top diagonal plots shows histograms of the sample distributions for each of the hyper-parameters during the Bayesian optimization.The 
plots below the top diagonal show the location of hyper-parameters in the search-space and the colour-coding shows the order in which the hyper-parameters were 
taken.The points in dark-purple corresponds to earlier hyper-parameters and lighter-yellow to later hyper-parameters. The points in red shows the location of the 
minimum or best hyper-parameter found by the Bayesian optimization process(Gilles and Manoj, 2021). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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