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Abstract: In recent decades, catastrophic wildfire episodes within the Sumatran peatland have
contributed to a large amount of greenhouse gas emissions. The El-Nino Southern Oscillation (ENSO)
modulates the occurrence of fires in Indonesia through prolonged hydrological drought. Thus,
assessing peatland vulnerability to fires and understanding the underlying drivers are essential to
developing adaptation and mitigation strategies for peatland. Here, we quantify the vulnerability of
Sumatran peat to fires under various ENSO conditions (i.e., El-Nino, La-Nina, and Normal phases)
using correlative modelling approaches. This study used climatic (i.e., annual precipitation, SPI,
and KBDI), biophysical (i.e., below-ground biomass, elevation, slope, and NBR), and proxies to
anthropogenic disturbance variables (i.e., access to road, access to forests, access to cities, human
modification, and human population) to assess fire vulnerability within Sumatran peatlands. We
created an ensemble model based on various machine learning approaches (i.e., random forest,
support vector machine, maximum entropy, and boosted regression tree). We found that the ensemble
model performed better compared to a single algorithm for depicting fire vulnerability within
Sumatran peatlands. The NBR highly contributed to the vulnerability of peatland to fire in Sumatra
in all ENSO phases, followed by the anthropogenic variables. We found that the high to very-high
peat vulnerability to fire increases during El-Nino conditions with variations in its spatial patterns
occurring under different ENSO phases. This study provides spatially explicit information to support
the management of peat fires, which will be particularly useful for identifying peatland restoration
priorities based on peatland vulnerability to fire maps. Our findings highlight Riau’s peatland as
being the area most prone to fires area on Sumatra Island. Therefore, the groundwater level within this
area should be intensively monitored to prevent peatland fires. In addition, conserving intact forests
within peatland through the moratorium strategy and restoring the degraded peatland ecosystem
through canal blocking is also crucial to coping with global climate change.
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1. Introduction

Tropical peatland ecosystems play a critical role in mitigating the effects of global
climate change [1]. Indonesian peatland has been estimated to form a vast carbon pool
by storing a large amount of carbon, covering more than half of the pan-tropical peat
carbon storage [2]. This pristine ecosystem represents an essential habitat for rare, en-
demic, or endangered biodiversity [3–5]. Moreover, it also contributed to ecosystem
services, such as water provisioning, and provides economic benefits for the local or
indigenous community [3,6,7].

Nevertheless, tropical peatland is fragile to extreme disturbances [8,9], particularly in
its hydrological stability, due to unwise intervention in the drainage system [10]. Peatland is
susceptible to fire and land subsidence when the groundwater levels drop below the critical
threshold of 40 cm from the peat surface [11]. In this recent decades, tropical peat swamp
forests have been strongly impacted by harmful anthropogenic activities [12]. Deforesta-
tion and drained peat can increase the tropical peatland flammability [13] that, leading to
numerous greenhouse gases (GHGs) emission [14,15]. According to Hooijer et al. [14], most
of the CO2 emissions from peat decomposition came from Indonesia, mainly from Sumatra
and Kalimantan. Meanwhile, peat fires are a critical perturbation that significantly impacts
ecology, climate, and socio-economic [9,16–18]. Widespread peat fires in Southeast Asia
resulted in substantial carbon emissions, with about 0.1 Gt per year [9]. In addition, fires
within peatland have been responsible for losses of tree diversity [19], endangered mam-
mals defaunation [20] (e.g., Sumatran orangutan [21]), and soil-organism extirpation [22].

El-Nino Southern Oscillation (ENSO) is vital in determining rainfall seasonality in
the humid tropical region [23]. ENSO is climatic inter-seasonal variability associated
with the interannual oscillations in sea-level pressure and intense excursions of the sea
surface temperature in the eastern Pacific [24], which has three states (i.e., El-Nino, La-
Nina, and Normal/Neutral) [25]. During the El-Nino years (i.e., the warming phase of the
eastern Pacific Ocean), the maritime continent can experience a more extended dry season.
Meanwhile, during the La-Nina years (i.e., the cooling phase), the onset of the monsoon
is usually earlier than normal conditions [26]. Although ENSO is initiated in the tropical
Pacific, it can affect the global climate system, with a more prominent signal than the other
inter-annual climate variations [26]. Moreover, increasing temperature and dry weather
during El-Nino events can potentially trigger wildfires [27,28].

In 1997 and 2015, the recurring catastrophic fires within the peat areas occurred during
strong El-Nino events [15,27]. Previous studies showed the massive impacts of the strong
El-Nino wildfires event in Indonesia, which produced enormous carbon emissions and
prolonged smoke-haze episodes across Indonesia and neighboring countries [15,27,29],
with economic costs in the range of USD 1.62–USD 2.7 billion [30]. However, fire emissions
within the peatland also cascaded in La-Nina and Normal phases [31,32]. In addition,
according to Murdiyarso et al. [32], most fires that occurred on Sumatra Island can be
attributed to anthropogenic activities, which are significantly related to land-use policies. A
recent study showed that Sumatra Island had the highest fire vulnerability [33]. Therefore,
assessing peat vulnerability to fires based on multidimensional perspectives across Sumatra
Island under various ENSO phases is crucial to eradicating global carbon emissions and
achieving sustainable peat management.

Understanding the fire regime is essential to assessing forest regeneration potential,
fire management, and human impacts [34]. There is little uncertainty that climate-induced
disruptions to fires will occur [35], although a previous study showed a strong connection
between fire and climate [36]. Fire needs biomass fuel to burn, atmospheric conditions
to allow for combustion, and ignitions [37]. Climate variability can influence all of these
descriptors in complex ways and over multiple temporal scales [35]. In addition, there is a
common debate related to the driving factors contributing to the fire and the influences
of land use policies in controlling fire regimes [38]. Thus, quantifying peat vulnerability
to fires and understanding the underlying driving mechanisms is crucial to developing
mitigation and adaptation strategies [39]. According to the Intergovernmental Panel on
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Climate Change (IPCC), vulnerability is the predisposition to be adversely affected by
the hazard (i.e., peat fires), including sensitivity to harm and low capacity to adapt [40].
Fire vulnerability models are used to predict the degree of susceptibility using a set of
observations as a function of external explanatory predictors, such as topographic, climate,
biophysics, and anthropogenic predictors [41].

Previous studies have predicted fire vulnerability using several approaches, i.e., mul-
ticriteria analysis [42], an analytic hierarchy process [43], and non-parametric statistical
test [44]. A recent study investigated wildfire susceptibility at the national level using
multi-dimensional explanatory variables (i.e., climatic, biophysics, and socio-economic) for
mitigation strategies [33]. However, they still used a scoring analysis to identify wildfire
susceptibility, which has shortcomings in terms of statistical robustness. In recent years, the
application of machine learning algorithms has rapidly increased, particularly in wildfire
science and management [45]. Previous studies showed that machine learning had better
performance than non-machine learning approaches [46–48]. The random forest algorithm
was the most popular machine learning algorithm to predict fire vulnerability, followed by
the maximum entropy, support vector machine, and boosted regression tree algorithms [45].
Song et al. [49] used a random forest algorithm to estimate fire occurrence in Hefei, China.
Peters and Iverson [50] incorporate fine-scale drought variables into a wildfire model based
on the maximum entropy framework in the eastern US. A previous study also used support
vector machine and boosted regression tree to assess fire susceptibility across the Spanish
Peninsula [51]. However, there is still a lack of studies providing a fire vulnerability as-
sessment in the tropical maritime continent, particularly on Sumatra Island. In addition,
a prior study showed that an ensemble model (i.e., the integration of multiple machine
learning predictions) could increase predictability and reduce bias from the models [52].
However, their study was only elaborated on two different algorithms (i.e., random forest
and support vector machine) to develop an ensemble.

In this study, we develop a map of peatland vulnerability to the fire of Sumatra under
various ENSO phases (i.e., El-Nino, Normal, and La-Nina) using four different machine
learning algorithms (i.e., random forest, support vector machine, maximum entropy, and
boosted regression tree) and their ensemble. We also investigate the most critical aspect
influencing their vulnerability to determine further actions that can be taken to reduce
future wildfires in Sumatran peatland. This study incorporates the three underlying driving
factors to fires (i.e., climatic, biophysical, and proxy to anthropogenic activities) following
Forzieri et al. [39].

2. Materials and Methods
2.1. Study Area

This study focused on peatland extents in Sumatra (Figure 1), referred to using the peat-
land map published by the Ministry of Agriculture [53]. Peatlands in this area have been
rapidly disturbed due to logging activities, fire, drainage, and conversion to plantation since
the 1980s [54] which makes them more vulnerable to yearly fire activity [55,56]. Sumatran
peatland covered about 63,832.55 km2, consisting of 202 Peat Hydrological Units/PHUs,
which are spread across six provinces, mainly at Riau, Jambi, and South Sumatra, followed
by Bengkulu, Bangka Belitung Islands, Riau Islands, Lampung, Nanggroe Aceh Darus-
salam, West Sumatra, and North Sumatra. PHU refers to the peat ecosystem that situated
between two rivers as stated in Government Regulation No.57/2016, which highlights the
ecosystem boundary as providing a new basis for peatland management [57].
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Figure 1. Map of the study area of the Sumatran peatland, Indonesia. 

2.2. Data Collection 
We used the historical fire occurrences (in frequency) from the Visible Infrared Im-

aging Radiometer Suite (VIIRS) 375 m active fire product from Fire Information for Re-
source Management System (FIRMS), (https://earthdata.nasa.gov/earth-observation-
data/near-real-time/firms/v1-vnp14imgt; accessed on 4 February 2022) and the Moderate 
Resolution Imaging Spectroradiometer (MODIS) active fire product 
(https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/mcd14dl; ac-
cessed on 4 February 2022), as the response variable to determine the level of fire vulner-
ability within the peatlands. 

The hotspot data selection was conducted by plotting MODIS-based (Confidence 
level > 90%) or VIIRS-based hotspots (High confidence level) over the last 8 years (2012–
2019). Using this selection process, 40,933 hotspots were obtained from VIIRS and 48,256 
hotspots from MODIS. The filter process was continued by overlaying with GRID meas-
uring (1 × 1) km2 and selecting grids that only contain one hotspot with a high confidence 
level of VIIRS and confidence level greater than 90% for MODIS. We conducted spatial 
autocorrelation (Global Moran’s I) [58] to reduce spatial autocorrelation [59] before input 
to the model and selected 8400 hotspot points. 

Considering that fire events and severity are influenced by El-Nino Southern Oscil-
lation (ENSO), we categorized our study period during 2012–2019 into El-Nino, La-Nina, 
and Normal phases. We defined ENSO years based on the Oceanic Nino Index (ONI) [60] 
which has become the standard by National Oceanic and Atmospheric Administration 
(NOAA) standard to identify El-Nino and La-Nina events. Table 1 indicates the yearly 
classification based on various ENSO phases. 

  

Figure 1. Map of the study area of the Sumatran peatland, Indonesia.

2.2. Data Collection

We used the historical fire occurrences (in frequency) from the Visible Infrared Imaging
Radiometer Suite (VIIRS) 375 m active fire product from Fire Information for Resource
Management System (FIRMS), (https://earthdata.nasa.gov/earth-observation-data/near-
real-time/firms/v1-vnp14imgt; accessed on 4 February 2022) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) active fire product (https://earthdata.nasa.gov/
earth-observation-data/near-real-time/firms/mcd14dl; accessed on 4 February 2022), as
the response variable to determine the level of fire vulnerability within the peatlands.

The hotspot data selection was conducted by plotting MODIS-based (Confidence
level > 90%) or VIIRS-based hotspots (High confidence level) over the last 8 years (2012–2019).
Using this selection process, 40,933 hotspots were obtained from VIIRS and 48,256 hotspots
from MODIS. The filter process was continued by overlaying with GRID measuring
(1 × 1) km2 and selecting grids that only contain one hotspot with a high confidence
level of VIIRS and confidence level greater than 90% for MODIS. We conducted spatial
autocorrelation (Global Moran’s I) [58] to reduce spatial autocorrelation [59] before input
to the model and selected 8400 hotspot points.

Considering that fire events and severity are influenced by El-Nino Southern Oscil-
lation (ENSO), we categorized our study period during 2012–2019 into El-Nino, La-Nina,
and Normal phases. We defined ENSO years based on the Oceanic Nino Index (ONI) [60]
which has become the standard by National Oceanic and Atmospheric Administration
(NOAA) standard to identify El-Nino and La-Nina events. Table 1 indicates the yearly
classification based on various ENSO phases.

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/v1-vnp14imgt
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/v1-vnp14imgt
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/mcd14dl
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/mcd14dl
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Table 1. ENSO year classification used in this study.

ENSO Phases Period

El-Nino (dry weather) 2014, 2015, 2018
La-Nina (wet weather) 2016, 2017

Normal 2012, 2013, 2019

2.2.1. Climatic Variable Data

To capture climatic variability within the peat layers, this study used precipitation data
retrieved from Climate Hazards Group Infra-Red Precipitation with Station data (CHIRPS)
during our timeframe analysis (2012–2019) [61] with a spatial resolution of about 0.05◦

(~5-km). We used mean and standard deviation values of precipitation data for each ENSO
scenario. This study performed statistical downscaling based on bias correction (Delta
method) [62] since prior data of climate had a relatively coarse resolution. We used the high
spatial resolution (~1 km) annual precipitation dataset of model output statistics combined
with mechanistic processes (i.e., the CHELSA algorithm [63]). These data incorporate the
effects of wind effects and, therefore allows for a better estimation of precipitation patterns.
Moreover, we also used a standardized precipitation index (SPI) [64] to capture climatic
anomaly signals from the rainfall during ENSO.

In addition, we used the Keetch-Byram Drought Index (KBDI), a continuous index to
estimate the dryness of the soil and duff layers. This index increases for the accumulation
of dry spells within the study area and decreases when it rains. Previous studies also used
KBDI as an indicator for wildfires, particularly in peatland [65,66]. We retrieved the KBDI
dataset that was developed by Van et al. [67] through Google Earth Engine [68] (Table 2).

2.2.2. Proxy to Anthropogenic Activities Variable Data

Undisturbed peat ecosystems are always water-saturated and therefore they are not
prone to fire [34], but if they are disturbed by human activities in the form of forest exploita-
tion, plantation, and agricultural land clearing, the level of vulnerability to fire increases,
especially during El-Niño [34,69–71]. As a proxy to estimate the level of human disturbance
on the peat ecosystem, we use the travel times to roads, forests, and cities rather than
Euclidean distances [72] in order to obtain a better understanding of human activities
within the peatland. This dataset also incorporates slope to represent the friction map [73],
retrieved from Shuttle Radar Topography Mission (SRTM) [74]. We used OpenStreetMap
data [75] as a point of interest (i.e., roads and cities) for distance–cost analyses. Furthermore,
we used intact forest landscape data to define the ecological point of interest for accessi-
bility [76]. In addition, we used a global human modification dataset that represents a
cumulative measure of human modification towards terrestrial ecosystems [77]. Population
data, retrieved from WorldPop, were also used in this study [78]. The proxy variable of
human disturbance hereafter is called anthropogenic data (Table 2).

2.2.3. Biophysical Variable Data

This study used harmonized global maps of aboveground and belowground biomass
carbon density [79,80]. The aboveground biomass map integrates land-cover specific,
remotely sensed maps of forests, grassland, cultivation, and tundra biomass. The below-
ground biomass map similarly integrates matching maps derived from each aboveground
biomass map and land-cover-specific empirical models. In addition, we also used several
vegetation indices, namely, the Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Normalized Difference Water Index (NDWI), Normalized Burned
Ratio Index (NBR), and Soil Adjusted Vegetation Index (SAVI), retrieved from Nadir BRDF-
adjusted MODIS reflectance (MCD43 product). We also used topographical data retrieved
from Farr et al. [74] to capture slope and elevation.



Forests 2022, 13, 828 6 of 21

As a proxy, to represent the amount of biomass/fuel load, we used the aboveground
biomass (AGB) map and belowground biomass (BGB) data from the Spawn et al. [80]
map (Table 2).

Table 2. Predictor used for the modelling.

No Feature Variable Unit Source

1 Climatic Annual Precipitation (Average) mm [61]
2 Annual Precipitation (Std) mm [61]
3 Annual Standardized Precipitation Index (SPI) - [61,64]
4 Annual Keetch-Byram Drought Index (KBDI) mm [67]

5 Proxy to anthropogenic activities Access to road day [75]
6 Access to forests day [76]
7 Access to cities day [75]
8 Human modification index - [77]
9 Human population head [78]

10 Biophysical Below ground biomass (BGB) Mg C per ha [80]
11 Above ground Biomass (AGB) Mg C per ha [80]
12 Elevation m asl [74]
13 Slope degree [74]
14 NBR - [81]
15 EVI - [82]
16 NDVI - [82]
17 NDWI - [83]
18 SAVI - [84]

2.3. Variable Selection

Variable selection performing multicollinearity analysis is commonly used in analysis
with high-dimensional data [85,86]. This is because the multicollinearity that occurs in two
or more variables will increase the standard error, unreliable model, and weak predictive
ability [86–96]. Therefore, the degree of collinearity can affect the estimation of model
coefficients and interpretation of the model [97]. To overcome this issue, we conducted a
variable selection for all proposed covariates (e.g., climate, anthropogenic, and biophysical
features) using Pearson correlation [87]. We used the Pearson correlation cut-off of 0.7 to
filter out highly correlated predictors for the selection of variables.

2.4. Vulnerability Modelling and Evaluation

Models were calibrated with ENMTML R package [98], running four algorithms with
a range of different machine learning techniques [99–102], i.e., Support Vector Machine
(SVM), Maximum Entropy (MXD), Boosted Regression Tree (BRT), and Random Forest
(RDF) to construct the probability of fire occurrence based on active-fires hotspots, based
on a coupled MODIS-VIIRS dataset with confidence levels of greater than 80% [34]. Back-
ground points were randomly sampled within the study area based on the geographical
and environmental constraints, following Barbet-Massin et al. [103]. We used a mobility-
oriented parity analysis [104] to extrapolate geographical locations to assess the model’s
transference onto various ENSO phases. Higher probability values indicate areas more
vulnerable to fires. To deal with overprediction, we incorporated spatial constraints into
our models with a peatland map across Sumatera Island from the Ministry of Agriculture
of Indonesia [53,105]. Moreover, we also conducted an ensemble model from all machine
learning algorithms based on a PCA-based ensemble that performs a principal compo-
nents analysis of selected suitability maps according to Sørensen value and used the first
component as the result [106].

We evaluated the models using five discrimination metrics: area under the curve
(AUC), true skill statistic (TSS), and Sørensen similarity indices. A previous study showed
that the use of TSS can be misleading regarding model performance due to its dependency
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on prevalence [107]; thus, we considered Sørensen’s similarity index (F-measure), as pro-
posed by Leroy et al. [107], to evaluate the model. This study transformed continuous
output from the model into binary maps to assess model performance based on a suitability
value that maximizes the Sørensen index [107].

In this study, we overlaid maps of high and very-high vulnerability to fires with
existing land-cover data within the peat areas to investigate further management of wildfire
prevention based on land-cover information. We used the Climate Change Initiative (CCI)
land cover dataset in 2019 from European Space Agency (ESA) with a spatial resolution of
about 300-m per pixel (available from https://maps.elie.ucl.ac.be/CCI/viewer/; accessed
on March 16, 2022). CCI land cover [108] contains 22 land-cover classes, retrieved from
Medium-Resolution Imaging Spectrometer (MERIS), Advanced Very-High Resolution
Radiometer (AVHRR), SPOT-Vegetation, and Proba-V satellites. Then, we reclassified land-
cover classification into the six Intergovernmental Panel on Climate Change (IPCC) land
categories, i.e., cropland, forest, wetland, urban, shrubs, and others, as suggested by [109].

3. Results
3.1. Variable Selection

Figure 2 showed pairwise variable analysis under three ENSO phases (i.e., El-Nino,
Normal, and La-Nina). We found several variables that had strongly correlated with
each other, particularly in the spectral indices of biophysical data. Under El-Nino and
La-Nina phases conditions, NDVI-NBR, NDWI-NBR, NDVI-EVI, SAVI-NBR, and SAVI-EVI
showed a very strong correlation. Meanwhile, under normal conditions, only NDVI-EVI,
SAVI-NDVI, and SAVI-EVI were correlated (|r| > 0.7; p-value < 0.05).
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Due to this collinearity issue of the spectral indices, we only selected NBR from all
spectral indices for consideration in the model. A previous study also revealed that NBR
showed a good performance for burn areas or fire event indicators [110]. Wang [111] also
showed that spectral indices such as NDVI, EVI, and SAVI encountered multicollinearity
issues. Similarly, NDWI, which represents water content, was also negatively correlated
with NBR. Therefore, we considered using NBR as a model predictor. Alademomi et al. [112]
also found a high collinearity between NDVI and EVI.

We also found highly correlated predictors between AGB-BGB and SPI-Precipitation
(STD). We selected BGB and SPI as the selected predictors to capture peat depth and
climate variability within the location, respectively. This study selected SPI because it
could capture the variability in drought conditions under El-Nino, La Nina, and normal
conditions compared to the annual precipitation (Figure 3a). SPI averages were −4.0, 4.0,
and 3.1 under El-Nino, La-Nina, and Normal phases. Meanwhile, the annual precipitation
did not significantly differ under El-Nino, La-Nina, and normal conditions. KBDI was
also significant under various ENSO phases. KBDI averages were 59.3 mm, 16.4 mm, and
25.9 mm under El-Nino, La-Nina, and Normal phases, respectively (Figure 3).
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Considering the above analysis, thus, 12 out of 18 uncorrelated input variables (i.e.,
Precipitation (Average), SPI, KBDI, access to road, access to forests, access to cities, human
modification, human population, below ground biomass, elevation, slope, and NBR) were
selected for further analysis of model selection. The use of uncorrelated variables will
eliminate data redundancy and reduce errors during analysis [113].
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3.2. Model Evaluation

Figure 4 shows the results from testing the performance of several algorithms under
various ENSO phases. The performance of all algorithms is excellent in all ENSO phases,
as indicated by the average AUC value of 0.85 (ranging from 0.81 to 0.87). Based on AUC,
there is a tendency for models under the El-Nino phase to obtain a better performance,
followed by the Normal and La-Nina phases.
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Figure 4. Box and whisker plots depicting the effects on discrimination metrics related to fire
vulnerability algorithms. The whisker represents the mean ± standard deviation, and the box
represents the mean ± standard error (BRT, boosted regression tree; MXD, maximum entropy; RDF,
random forest; SVM, support vector machine; ENS, ensemble).

The average TSS value of all algorithms under all ENSO phases is 0.57 (ranging
from 0.48 to 0.64). From the TSS metric, the performance of the model is generally better
under the El-Nino phase, followed by the Normal and La-Nina phases. A widespread
fire event during El-Nino can improve the detectability of fires and thus increase the
model performance.

The average Sorensen index value of all algorithms in all scenarios is 0.81 (ranging
from 0.79 to 0.83). Comparing the Sorensen values, there is a tendency for the model
to perform better in the El-Nino phase, followed by the Normal and La-Nina phases.
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Furthermore, in a comparison among algorithms, the Ensemble model showed the best
performance under all ENSO phases (Figure 4).

3.3. Peat Vulnerability to Fires

The vulnerability of peatland to fire maps under various ENSO phases was generated
from the ensemble model with a continuous scale ranging from 0 to 1. The greater the value,
the higher the level of vulnerability. Overlaying these map data with hotspots showed the
correspondence between the frequency of fire occurrences and the level of vulnerability—
the more vulnerable, the greater the frequency of the fire occurrence (Figure 5). Regarding
the response of variables, it shows that the higher the NBR, and the human population, the
higher the level of vulnerability in all ENSO phases (Figure S1).
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Figure 5. Spatial Sumatran peat vulnerability probability to fire based on the ensemble model (a) and
relationships between number of fire density and vulnerability to fire probability (b) during various
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Further, the map was converted into a fire vulnerability map with five vulnerability
classes based on quantile following Sakti [33], and classified into very low, low, medium,
high, and very-high classes of vulnerability (Figure 6). Based on Figure 6, it was apparent
that the areas in the high and very-high categories during El-Nino are more than two times
higher than Normal and La-Nina phase conditions. On the other hand, we found broader
areas to have very low vulnerability to fires during La-Nina.
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Based on the El-Nino phase, we found that Sumatran peatland areas covered 18% and
10%, belonging to high and very-high vulnerability, respectively. Based on the La-Nina
phase condition, we found that Sumatran peatland areas with 7% and 5% coverage have
high and very-high vulnerability, respectively. Furthermore, the Normal phase of ENSO
showed that Sumatran peatland areas with 7% and 4% coverage have high and very-high
vulnerability, respectively. We indicated that El-Nino phases could significantly increase the
vulnerability to peat fires (about two times higher than the Normal and La-Nina phases).
The Wilcoxon tests showed a significant discrepancy between the high and very high peat
fire vulnerability under various ENSO phases (p-value < 0.05).

An overlay analysis can identify areas with high and very-high classes in all ENSO
phases. The land category of high peat fire susceptibility is typically seen in cultivation
areas (57.74%), shrubs (18.63%), wetland (15.86%), forest (7.71%), and a small proportion of
settlement (0.05%) (Figure 7). The area is primarily located on Riau (97.38%), followed by
Aceh (2.10%) and South Sumatra (0.52%) (Figure 8). The elevated susceptibility to fires is
distributed in PHU Sungai Rokan—Sungai Siak Kecil (46.11%), PHU Sungai Barumun—
Sungai Kubu (12.65%), PHU Sungai Rokan Kiri—Sungai Mandau (12.01%), and PHU
Batang Rokan Kiri—Batang Sosa (10.42%) in Riau Province (See Table S1 for further detail).
This study showed that high or very high vulnerability to peatland fires mainly occurred in
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agriculture and shrubs, indicating that the degraded areas were more prone to fires rather
than undisturbed ecosystems.
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3.4. Variable Contribution

This study found the discrepancy of the variable contributions under various ENSO
phases (i.e., El-Nino, Normal, and La-Nina phases). However, the role of NBR is always
higher than the other variables under all ENSO phases. Other important factors include
access to roads (13.15%), human modification (9.87%), and population (10.40%) for the
El-Nino, Normal, and La-Nina phases, respectively (Figure 9 and Table S2).
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4. Discussion

Climate change derived from altered land-use is threatening the tropical peatlands [114].
A recent study found that the positive Indian Ocean Dipole (IOD), combined with El-
Nino phases caused the greenhouse-gas emissions from intact peatland to significantly
increase [114]. Due to climate change, the vulnerability of peatlands to fire is accelerat-
ing [115,116]. A previous study also showed that El-Nino event could amplify the risk of
wildfire [117]. Hydrological approaches (e.g., groundwater levels) have been widely used to
indicate fire warnings within the peatland [28]. However, they could not capture the spatial
patterns of the peat fires regime [66]. A recent study developed wildfire vulnerability based
on national-scale multidimensional parameters using a scoring approach [33]. Nevertheless,
they cannot capture inter-seasonal climatic variations due to the limited timeframe used
in their study. Therefore, we developed a map of the vulnerability of peatlands to the fire
in Sumatra under the various conditions of El-Nino Southern Oscillation (ENSO) phases
and investigated the most important aspect that influences their susceptibility to determine
further actions for reducing future wildfires in Sumatran peatland.

To quantify the vulnerability of Sumatran peat to fires during the various ENSO
phases, we ensembled models based on various machine-learning approaches. However, it
is also important to select good predictors for the machine-learning approaches [118] prior
to running the machine-learning approaches to simplify the model. Sakti [33] provided
a new, multidimensional approach to spatial prioritization for wildfire mitigation at the
national scale. However, their estimation of wildfire susceptibility still relies on equal-
weighted analysis, leading to biased output interpretation. The use of many variables
without a good treatment of predictor collinearity is prone to error [87]. Our approaches
performed a multicollinearity analysis, preprocessing the predictors to overcome several
errors and misleading the model. Furthermore, this study found that the ensemble model
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was outperformed compared to other algorithms, which were Boosted Regression Tree
(BRT), Maximum Entropy (MXD), Random Forest (RF), and Support Vector Machine (SVM).
The principle of the ensemble model is to aggregate the insights obtained from multiple
learning models. This algorithm’s predictive performance is greater than any individual
classifier [119], although most of the models showed a relatively good performance. Ma-
chine learning approaches could potentially be used for peatland management in wildfire
mitigation strategies within peatland [45].

The vulnerability maps across Sumatran peatland suggest that further mitigation ac-
tions should consider the ENSO phases due to their different patterns. During El-Nino, high
and very-high susceptibility were found in all provinces and mostly in Riau (49.82%), South
Sumatra (40.41%), and Jambi (6.26%). Meanwhile, under La Nina condition, the areas with
a high level of vulnerability were only found in Riau (95.87%) (Figure 6). Under the normal
phase, areas with high and very-high vulnerability are relatively very low, and spread
across Riau (64.24%), Jambi (16.71%), and South Sumatra (15.44%). In the past few decades,
peat degradation and land cover change due to anthropogenic pressures in Sumatera led
to catastrophic fire events [120–122]. Our findings show the importance of intact forest in
avoiding wildfires within the peatland. Moreover, we found that cultivation areas within
the peatland were considerably responsible for their high fire vulnerability. Other study
also revealed that agricultural practices within the peatland can enhance recurrent fires
activities and extensive burning [34]. The greenhouse-gas measurement within Sumatran
peatland also revealed that degraded peatland had a greater carbon dioxide emission than
undisturbed peatland [114]. Thus, preserving the remaining undisturbed forest within
the peatland is crucial to reducing greenhouse-gas emissions [114]. By ascertaining the
locations of each PHU, mitigation actions can be more efficient.

We found that NBR was the most essential variable in the assessment of peatland
vulnerability to fires in all ENSO phases. NBR is a variable that is widely used in fire
studies [123–125]. A recent study also revealed that NBR can effectively depict burned
areas within the tropical region [110]. The NBR value is influenced by climatic conditions
since it is related to the water content of vegetation or soil [126]. If the vegetation is under
stress due to drought, the reflectance of NIR value will be very low, while the SWIR value
is high; therefore, the NBR value will be low or even negative [127,128]. Mitigation actions
that can be taken is to keep the peat in wet conditions, for example, by blocking canals to
avoid over-draining, especially during El-Nino [129,130].

KBDI has commonly been used as a fire warning indicator due to its sensitivity in
response to hydrological drought [66,117]. KBDI and SPI have shown a high level of per-
formance in depicting different ENSO phases (Figure 3). Understanding the fire behaviors
within peatlands related to hydrological and meteorological parameters is crucial to fire risk
management [131]. Recent studies also revealed the importance of coupled observational
water table data with climatic indices used for drought-fire assessment [66,131]. Although
we do not rely on groundwater level data in this study, our results plausibly demonstrate
peatland’s susceptibility to fire under various ENSO phases.

Anthropogenic (human disturbances) activities based on a human population, acces-
sibility to roads, and human modification index had an important effect on peatland’s
susceptibility to fires. The demand for more food rises as the population increases, lead-
ing to human modifications such as fossil fuel combustion [132] while clearing land for
agricultural purposes. A previous study also confirmed that fire occurrences over the
forest areas in the local region of Sumatra were mostly influenced by human activities [133].
The slash-and-burn technique that was commonly used by the most Sumatran traditional
community that can lead to wildfires and thick haze [134]. Both small-holders and massive
industrial plantations, such as the palm oil, timber (pulp and paper), and logging industries
with concession covering 21% of land area, are commonly considered to contribute to fire
events in Sumatra, particularly in the peatland [135].

Understanding peatland’s resilience to anthropogenic activities plays a pivotal role in
reducing the harmful impacts from peatland degradation through mitigation strategies [1].
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Our findings highlight Riau’s peatland as the most vulnerable area to fires in Sumatra Island.
The previous study showed that powerful government and business actors could strongly
alter socio-environmental factors within the complex Sumatran peatland ecosystem [121].
The Peat Restoration Agency of Indonesia was developed in 2016 to tackle multifaceted
problems in the peatland through restoration, i.e., rewetting, revegetation, and revitalization
of the local community [136]. Canal blocking became the first safeguard for degraded
peatland restoration [120], particularly in areas with high susceptibility to fire. Afterwards,
in the areas with recurrent historical fires (i.e., very-high susceptibility), revegetation is
needed using native species to manage peat properties before planting [137]. Moreover,
local communities in the surrounding peatlands have already conducted the slash-and-
burn activities for more than a century [122]. Thus, effective revitalization should be
implemented to enhance community livelihood, such as paludiculture [138]. Our studies
provide spatially explicit information to support the management of wildfires in peatland,
and particularly to identify the priority of peat restoration. Protecting undisturbed peatland
based on the model through strong policies such as imposing a moratorium is also crucial
to coping with global climate change [1,114].

5. Conclusions

Calculating peatland vulnerability to fires and understanding the underlying drivers
are essential to developing sustainable peatland management and mitigation strategies.
However, several previous studies have failed to capture inter-seasonal climatic varia-
tions due to their limitation in providing an excellent temporal dataset for the model.
Previous studies on peatland fire vulnerability have relied on subjective approaches and
lack statistical robustness. Therefore, this study used multiple dimensions of drivers (i.e.,
climatic, biophysics, and anthropogenic) to capture peatland susceptibility to fires based
on ensembled machine learning approaches.

An ensemble model based on various machine learning algorithms (i.e., random
forest, support vector machine, maximum entropy, boosted regression tree) showed a
great performance in depicting fire vulnerability within Sumatran peatlands compared
to a single algorithm. The results showed that NBR made the highest contribution to the
fire’s susceptibility within the Sumatran peatland in all ENSO phases, followed by distance
to roads, human modification, and population for the El-Nino, Normal, and La-Nina
periods, respectively. We found that the high to very-high susceptibility of peatlands to
fires increases during El-Nino conditions, and most of this area is agricultural area and
shrubs. The peatland ecosystem in Riau Province is the area most vulnerable to fires on
Sumatra Island. Furthermore, we also found shifting patterns of fire vulnerability under
various ENSO conditions, which implies the dependency of climate variability (i.e., ENSO)
on fire susceptibility within peatland.

We reflect on this study’s potential to have a significant impact on the peatland regu-
lations. Our peatland susceptibility to fire maps can be used by the government (i.e., the
Peat Restoration Agency of Indonesia) as a spatial recommendation plan in the national
commitment to achieving the GHGs’ reduction target (i.e., net sinks by 2030) by eradicating
emissions from fire and peat decomposition by enhancing peatland management systems.
Moreover, the sustainable cultivation activities within the existing peatland and restoration
efforts (i.e., canal blocking, revegetation, and revitalization) should be performed in the ap-
propriate areas to minimize the negative impacts of peat degradation. Further investigation
of the other atmospheric oscillations that could potentially increase peatland susceptibility
to fires (e.g., Indian Ocean Dipole) should be conducted in future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f13060828/s1. Figure S1: Response curves depicting the relationship between peatland
vulnerability to fires (in probability) and all predictors during El-Nino, Normal, and La-Nina phases,
Table S1. The areas with high and very-high vulnerability classes of peatland fires under all ENSO
conditions based on peat hydrological units, Table S2: Variable contribution scores for the peatland
vulnerability to fires under different ENSO phases based on ensemble model.
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