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We studied links between human malnutrition and wild meat availability within the Rainforest Biotic Zone
in central Africa. We distinguished two distinct hunted mammalian diversity distributions, one in the
rainforest areas (Deep Rainforest Diversity, DRD) containing taxa of lower hunting sustainability, the other
in the northern rainforest-savanna mosaic, with species of greater hunting potential (Marginal Rainforest
Diversity, MRD). Wild meat availability, assessed by standing crop mammalian biomass, was greater in
MRD than in DRD areas. Predicted bushmeat extraction was also higher in MRD areas. Despite this,
stunting of children, a measure of human malnutrition, was greater in MRD areas. Structural equation
modeling identified that, in MRD areas, mammal diversity fell away from urban areas, but proximity to
these positively influenced higher stunting incidence. In DRD areas, remoteness and distance from dense
human settlements and infrastructures explained lower stunting levels. Moreover, stunting was higher away
from protected areas. Our results suggest that in MRD areas, forest wildlife rational use for better human
nutrition is possible. By contrast, the relatively low human populations in DRD areas currently offer
abundant opportunities for the continued protection of more vulnerable mammals and allow dietary needs
of local populations to be met.

I
n Africa’s Congo Basin, people eat an estimated five million tons of bushmeat per year1,2, and there is evidence
that bushmeat is an important source of many nutrients (especially protein, B vitamins, iron and zinc) for both
rural and urban households throughout Africa2. However, the magnitude of exploitation and consumption,

varies between countries and regions, determined primarily by its availability, and influenced by such factors as
governmental controls on hunting, socio-economic status and cultural prohibitions. In areas where wildlife still
exists people collect, hunt, purchase and eat bushmeat. Some people depend on bushmeat because they have no
other source of meat or cannot afford alternative sources; others eat bushmeat as a matter of preference or as a
luxury item/delicacy for special occasions. The reality in central Africa is that, for the greater majority of rural
people, bushmeat represents a vital dietary item for reasons dictated by lack of alternate sources, financial
limitations, preferences and cultural values. For such people, wild animals constitute a valuable food resource,
which cannot be easily withdrawn or replaced without causing wide-ranging socio-economic imbalances.

There is strong empirical evidence for the view that wildlife is being depleted on an unprecedented scale3 with a
major transition in the scale of offtake in recent years. This drawdown is perceived by some as likely to have
negative consequences for future generations3,4. Yet, conservation practitioners and planners often perceive
hunting of wild animals as a drain to ecosystems5,6, in contrast to those involved with development issues who
give greater emphasis to biodiversity as a resource to support human needs. Thus, to date, bushmeat has rarely
figured seriously in international development strategies3, but has been a strong banner for the conservation
lobby7,8. One reason for this may be that a strong relationship between use of wild meat and human health has not
yet been fully confirmed.

OPEN

SUBJECT AREAS:
SUSTAINABILITY

TROPICAL ECOLOGY

Received
4 September 2014

Accepted
8 January 2015

Published
2 February 2015

Correspondence and
requests for materials

should be addressed to
J.E.F. (jfa949@gmail.

com)

SCIENTIFIC REPORTS | 5 : 8168 | DOI: 10.1038/srep08168 1

mailto:jfa949@gmail.com
mailto:jfa949@gmail.com


Investigations of the role of wildlife on human health in central
Africa are limited, most often restricted to isolated studies2 or based
on estimated country-level production data from the Food Balance
Sheets4 produced by the Food and Agriculture Organization of the
United Nations (FAO). However, there is some evidence that indi-
cates a strong causal link between bushmeat supply and human
nutrition. For example, a study of children under 12 y of age in rural
northeastern Madagascar showed that lack of access to wild meat
causes a 29% increase in the numbers of children suffering from iron
deficiency anemia and a tripling of anemia cases among children in
the poorest households9. Thus, if consumption of sufficient amounts
of nutrients to meet the body’s needs are limited, including those
contained in meats, chronic malnutrition will occur over time and
will result in growth retardation in children (stunting) and eventually
ill health in later life10.

In the absence of direct measures of nutritional status of human
populations at a subnational level, stunting prevalence to the lowest
administrative unit can be employed as a useful indicator of chronic
malnutrition in Africa11. Stunting can then be used to correlate with the
availability of different food items e.g. meats, even though various
factors may affect retention of nutrients (e.g. disease12–14).
Notwithstanding, in this paper we studied whether potential availability
of wild meats was linked to stunting in children in central Africa. We
base our analyses on the backdrop of the distribution of mammalian
species assemblages, which we classify according to their hunting poten-
tial, and in which we estimate wild meat biomass likely to be at the
disposal of humans. Given the strong associations that appear between
mammalian diversity areas and stunting, we then statistically test three
plausible hypotheses to examine the association between stunting and
huntable mammalian diversity as proxies of wild meat availability:

H1: Mammalian diversity patterns directly influence malnutrition
in humans.

H2:Mammalian diversity patterns influence human population
levels and their impacts, and these are correlated with malnutri-
tion in humans.
H3:Human population levels and their impacts influence both
mammalian diversity areas and malnutrition in humans.
H0:There is no relationship between mammalian diversity pat-
terns and human malnutrition.

We contend that if a strong correlation between bushmeat avail-
ability and malnutrition in humans is established, coalescing strat-
egies that deal with conservation of wildlife, as well as human
livelihoods, becomes imperative.

Geographical focus
Our study area was limited to the Rainforest Biotic Zone (RBZ) of
central Africa. The RBZ, defined by Kingdon et al. (2013)15, following
White (1983)16 encompasses six main countries (the Democratic
Republic of the Congo, the Republic of the Congo, Central African
Republic, Cameroon, Gabon and Equatorial Guinea), as well as parts
of another three (Angola, Burundi and Rwanda) (Fig. 1). The main
vegetation type in the region is Guineo-Congolian lowland rain for-
est, concentrated in the Congo basin, corresponding to the second
largest (close to 2 million km2) and the least degraded area of con-
tiguous moist tropical forest in the world17. Away from the central
regions of the RBZ, the dominant vegetation includes woody savan-
nas, as well as areas of cropland-natural vegetation mosaic18.

Datasets
Huntable mammal species. From a previous study19 in which we
derived predicted distribution maps for all hunted terrestrial mammal
species occurring within the RBZ, we delimited mammalian diversity
areas for species of a lesser or greater hunting potential (see Methods). A
total of 141 monotypic species and 24 others, including 67 subspecies,

Figure 1 | Study area. Green areas are rainforests, and warm pink areas are woody savannas, taken from the Collection 5 MODIS Global Land Cover Type

product (www.landcover.org). Coarse red lines are country borders, and slim black lines are limits of subnational units considered by FAO for

data on children stunting20. Maps were generated using ArcGIS.
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belonging to 11 Orders, were included in our analyses (see Methods and
Appendix S1).

Child stunting
We used a global map of the distribution of chronic undernutrition at
national and subnational levels depicting stunting in growth among
children under five years of age20 (Fig. 2). This map, generated by the
FAO, employs stunting as a measure of prevalence of chronic under-
nutrition. Stunting here is defined as height-for-age below minus two
standard deviations from the international growth reference
standard (National Center for Health Statistics/World Health

Organization). This indicator reflects long-term cumulative effects
of inadequate food intake and poor health conditions as a result of
lack of hygiene and recurrent illness in poor and unhealthy
environments.

Results
Huntable mammalian diversity and standing crop biomass. We
distinguished two separate mammalian assemblages: (1) a Deep
Rainforest Diversity (DRD), largely composed of low hunting-
resilient species i.e. large-bodied, slow reproducing taxa, mostly
found within wet Guinea-Congolian lowland rainforest in the center
of the RBZ (Fig. 3A), and (2) a Marginal Rainforest Diversity (MRD),
comprised of high hunting-resilient taxa, i.e. smaller-bodied, fast-
reproducing mammals inhabiting the woody savanna/grasslands in
the northern, eastern and southern RBZ21 (Fig. 3B).

Total standing crop mammalian biomass within each mammalian
assemblage correlated significantly and positively with both DRD (n
5 367 grid cells; r 5 0.167; P , 0.001) and MRD areas (n 5 367 grid
cells; r 5 0.595; P , 0.001). However, potential standing biomass of
mammal species of low hunting potential19 was significantly and
positively correlated with DRD areas (n 5 367 grid cells; r 5

0.652; P , 0.001). Likewise, the potential standing biomass of mam-
mal species of high hunting potential19 was significantly and posi-
tively correlated with MRD areas (n 5 367 grid cells; r 5 0.773; P ,
0.001).

Using standing biomass as a surrogate of potential wild meat
resources available to humans, we showed that higher mammalian
biomass was typical of MRD but not of DRD areas, despite the latter
areas having six times more diversity than MRD areas (Figs. 3A and
3B). Potential standing biomass in DRD areas (Fig. 3C) was lower
(mean 6 SE 5 1,805 6 1,074 kg/km2, median 5 1,535 kg/km2,
range 5 205–4,759 kg/km2) than that in MRD areas (Fig. 3D) (mean

Figure 2 | Prevalence of stunting among children under five20. Circles are

located at the centroids of subnational units providing data. Circle size

indicates prevalence. Map was generated using ArcGIS.

Figure 3 | Diversity and standing biomass of mammals in central Africa. (A) Deep Rainforest Diversity, DRD. (B) Marginal Rainforest Diversity, MRD.

DRD and MRD are the accumulated favorability values, weighted by hunting sustainability values, of all hunted mammals (Appendix S1) found

within the Rainforest Biotic Zone. (C) Potential standing biomass in DRD mammals. (D) Potential standing biomass in MRD mammals. Maps were

generated using ArcGIS.
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6 SE 5 5,618 6 4,296 kg/km2, median 5 2,461 kg/km2, range 5
909–11,697 kg/km2).

Bushmeat extraction patterns. The overlay map of urban, road
networks, protected areas and densely populated rural areas within
the RBZ (see Methods) (Fig. 4) indicated that potential hunting
intensity was higher in the MRD areas but lower in the DRD areas.

Stunting, mammalian diversity and standing biomass. Stunting
was unevenly distributed throughout the study region with more
stunting occurring away from the central DRD areas (Fig. 2).
Stunting was negatively correlated with mammalian diversity in
DRD areas (n 5 60; r 5 20.288; P 5 0.027) but positively
associated to MRD areas (n 5 60; r 5 0.325; P 5 0.012).
Bushmeat extraction values were positively correlated with the
prevalence of child stunting (n 5 60; r 5 0.373; P , 0.005) and

with mammalian diversity in the MRD areas (n 5 60; r 5 0.484;
P , 0.001). Extraction was negatively correlated with mammalian
diversity in the DRD areas (n 5 60; r 5 20.469; P , 0.001).

Hypothesis testing. We found no evidence to support H1 for both
DRD and MRD areas. Any direct relationship lost statistical
significance when other factors were included in the models
(Fig. 5; Table 1). Domestic meat was excluded from all models
because it neither showed significant relationships with stunting
among children nor influenced the rest of relationships among
variables (compare Table 1 and Fig. 5 with Table S1 and Fig. S1 in
Appendix S2). The inclusion of domestic meats enlarged the
differences between observed and expected covariance matrices
(see x2 in Table S2, Appendix S2).

H2 was more consistent than H3 for DRD areas, (Fig. 5A; Table 2).
Arrow signs linking DRD areas with the four main human variables

Figure 4 | Anthropogenic pressures. (A) Brown: above median areas of rural human population density. (B) Grey: below median areas of distance to

urban areas. (C) Pink: below median areas of distance to roads. (D) Green: above median areas of distance to protected areas. (E) Bushmeat

extraction patterns emerging from the overlay of urban areas, road networks, protected areas and densely populated rural areas (areas with a total score of

4 had the highest bushmeat extraction potential, whereas areas with a total score of a 0 had the lowest). Maps were generated using ArcGIS.
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were opposite to those linking these variables to bushmeat extraction.
This suggests that remoteness to human agglomerations and infra-
structures was linked to lower levels of bushmeat offtake. Moreover,
child stunting was higher in rural and urban areas of higher human
concentrations, but lower in those areas closer to protected areas.

In MRD areas, H3 was better supported than H2 (Fig. 5B; Table 2).
In this model, arrow signs linking the human variables with MRD
were the same as those linking human variables to bushmeat extrac-
tion, with the exception of a positive relationship with distance to
urban areas.

Discussion
There is growing evidence that forest cover and dietary diversity
are correlated in Africa22. Forest foods help maintain household
nutrition in many communities, especially during lean seasons
(complementing, for example, the seasonality of staple agricultural
crops), in times of low agricultural production, during periods of
climate-induced vulnerability, and when gaps in the availability of
food occur due to other cyclical events. Animal source food con-
sumption, however, was not related to tree cover23, perhaps
because wildlife is the main source of nutrients in many tropical
forest and non-forest regions2,24. A significant proportion of the
wildlife biomass hunted by humans for food across the tropics,

especially large-bodied primates, ungulates and rodents (average
weight greater than 1 kg), is found in tropical rainforests, with
ungulates and sometimes rodents dominating the biomass in more
open habitats25. Animal-based foods supply many important
micronutrients in much higher amounts or with higher bioavail-
ability than most plant-based foods26, and as attested in Golden et
al.’s (2011)9 study on the importance of wild meat in reducing
iron deficiency anemia in children.

There are growing concerns that any decline in the availability of
wild meat will threaten the food security and livelihoods of forest
communities27, especially those in which home consumption is more
common than wild-meat trading. However, the relationship between
wild meat availability and human nutrition may vary according to
habitat type and region. In our study, we show, for the first time, that
the relationship between hunted mammalian diversity, which in turn
is linked to wild meat availability and human pressure, are correlated
with children malnutrition levels. We show that the more remote
forest areas within central African rainforests seem capable of ade-
quately supporting existing human populations at a reasonable level
of health. This contrasts with the more highly populated woody
savannas/grasslands along the northern, eastern and southern RBZ
that are under much higher anthropogenic pressures i.e. more bush-
meat extraction. Hence, this spatial disparity in human needs and

Figure 5 | Path diagrams representing relationships between diversity and stunting among children. Three hypotheses are tested: H1 (direct

relationship); H2 (diversity influences human variables, and these influence stunting); H3 (human variables influence both diversity and stunting).

(A) Models for Deep Rainforest Diversity (DRD). (B) Models for Marginal Rainforest Diversity (MRD). Circles enclosing "e": error terms associated to

dependent variables. Solid black arrows: significant relationships (n 5 60; P , 0.05); dashed black arrows: 0.05 , P , 0.07; grey arrows: non-significant

relationships (P . 0.07); double arrows: covariance between variables, which are considered in the diagrams when significant correlations were identified

within the study area (P , 0.05). 1: Positive relationship; - : Negative relationship. Encircled hypotheses (H2 in A and H3 B) indicate the best fitted

models.
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bushmeat supply present challenges for development and
conservation.

Although our analyses are based on inferences made from correla-
tions between interacting environmental and nutrition variables, our
results correspond with others on the state of conservation of habi-
tats and fauna in the Congo Basin. For example, our data points to
the importance of the central rainforest blocks as significant regions
of continued forest protection28. Such ‘deep forest’ faunas, though
also under substantial threats28, are currently under less anthro-
pogenic pressures than the ecotonal regions along the margins of
the RBZ. Human activity in these more open habitats, primarily
burning and land clearing for cultivation is intense29. Moreover,
anthropogenic disturbance around cities has led to significant
decreases in faunal diversity30. In our MRD model, proximity to
urban areas is the only human-pressure variable significantly
explaining stunting, but closer to protected areas stunting is less.

An immediate consequence of our study should be to rouse pro-
ducer governments to put appropriate management regimes in place
to integrate the bushmeat issue into the discussion on assessment of
environmental assets. This is not new7,8, but here we advance the
debate by presenting a more complex scenario, in which deep rain-
forest wildlife may still support food security of hunter-gatherers and
others on condition that human concentrations are kept low. Instead,
along the RBZ margins, composed of more sustainable wildlife and
more productive in terms of wild meat, higher population densities
here explain the observed levels of malnutrition. More specifically,
adequate human nutrition is likely in rural landscapes, but as our
analyses show, collapses around urban areas, where child malnutri-
tion is more prevalent. Although our results require further empirical
tests and more work on the ground to investigate how the different
drivers affect malnutrition and the role wildlife plays, the strong
correlations we confirm between wild meat and malnutrition are

Table 1 | Standardized weights (SW) and statistical significance (P) of regressions. Hypotheses tested for the relationship between mammal
diversity and stunting: H1 (direct relationship); H2 (diversity influences human variables, and these influence stunting); H3 (human variables
influence both diversity and stunting). DRD: Deep Rainforest Diversity; MRD: Marginal Rainforest Diversity. To identify dependent and
independent variables, see Fig. 5

Diversity Stunting prevalence

SW P SW P

H1 - DRD
DRD 20.288 0.022

H2 -DRD
DRD 20.024 0.869
Rural population density 20.394 0.001 0.342 0.016
Distance from urban areas 0.235 0.066 20.264 0.058
Distance from roads 0.509 ,0.001 0.012 0.939
Distance from protected areas 20.234 0.067 0.323 0.014

H3 - DRD
DRD 20.024 0.870
Rural population density 20.358 0.003 0.351 0.015
Distance from urban areas 20.098 0.427 20.268 0.054
Distance from roads 0.391 0.003 0.012 0.940
Distance from protected areas 20.364 ,0.001 0.328 0.015

H1 - MRD
MRD 0.325 0.009

H2 - MRD
MRD 0.145 0.376
Rural population density 0.643 ,0.001 0.261 0.117
Distance from urban areas 20.103 0.432 20.297 0.035
Distance from roads 20.444 ,0.001 0.044 0.781
Distance from protected areas 0.019 0.886 0.298 0.019

H3 - MRD
MRD 0.149 0.378
Rural population density 0.643 ,0.001 0.263 0.125
Distance from urban areas 0.231 0.030 20.300 0.036
Distance from roads 20.269 0.018 0.043 0.781
Distance from protected areas 0.241 0.011 0.301 0.020

Table 2 | Fit summary for models relating mammal diversity, stunting and human pressure. x2: test of differences between observed and
expected covariance matrices; P: statistical significance of x2; TLI: Tucker-Lewis Index; CFI: Comparative Fit Index; NFI: Normed Fit Index;
RMSEA: Root Mean Square Error of Approximation; AIC: Akaike Information Criterion. Hypotheses tested for the relationship between
diversity and stunting: H2 (diversity influences human variables, and these influence stunting); H3 (human variables influence both
diversity and stunting). DRD: Deep Rainforest Diversity; MRD: Marginal Rainforest Diversity. All statistics show best fit of H2 for DRD,
and of H3 for MRD

x2 P[d.f.53] 53] TLI CFI NFI RMSEA AIC

H2 - DRD 3.572 0.312 0.964 0.993 0.962 0.057 51.572
H3 - DRD 4.573 0.206 0.900 0.980 0.951 0.095 52.573
H2 - MRD 4.905 0.179 0.898 0.980 0.955 0.105 52.905.
H3 - MRD 4.573 0.206 0.916 0.983 0.958 0.095 52.573
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noteworthy. We thus argue that this is not a spurious effect, but one
that powerfully points to the significance of wild meat in sustaining
human populations in central Africa. However, our results should be
considered of heuristic value and this stage not to be used to propose
unfettered access rights for the poor nor draconian conservation
schemes. What it does underline, rather, is the need to consider a
wider political agenda for developing practical policies that benefit
both people and biodiversity. Emerging strategies from this frame-
work would increase public recognition of bushmeat’s economic
value and the need to regulate and plan its use, but it would also
emphasize the need for adequate and accessible alternative food
sources to overturn the malnutrition levels seen along the marginal
RBZ habitats. All this would raise an interesting set of questions
about (for example) the relationship between natural resource use
and economic growth, or between effective conservation and resi-
lient development.

Methods
Mapping mammalian assemblages. We distinguished two separate mammalian
assemblages, DRD and MRD, in central Africa based on Fa et al.’s (2014)19 analysis of
differing capacity for hunting sustainability of each species. For this, we employed two
indices based on accumulating favorability values obtained through distribution
modeling, for every species in every locality19,31. Favorability models define to which
degree environmental conditions at each locality favor the species’ presence,
independently of the species’ prevalence32,33. We built favorability models for 165
species (see Datasets section and Appendix S1) using 1u 3 1u-resolution presences
and absences derived from IUCN’s (2014)34 range maps. At this spatial resolution,
models based on extent-of-occurrence maps are still meaningful35. We trained the
models using 27 variables describing climate, topo-hydrography, land cover/use and
other anthropogenic forces (see Fa et al. 201419 for more details). We then used the
"direct downscaling approach" to project all models to a 0.1u 3 0.1u resolution grid36.
Only favorability values where species are known to occur according to the IUCN
(2014)34 were retained. Here, favorability values for every subspecies were considered
separately.

MRD values corresponded to the "Sustainable Accumulated Favorability" (SAFj) in
Fa et al. (2014)19. This index was calculated by adding up the favorability value (Fi) of
all i taxa in each j cell in the study area, after each taxon’s favorability was weighted
according to the taxon’s potential resilience to hunting (Potential Hunting
Sustainability, PHS, see the "restrictive" approach in Fa et al. 201419). PHS was
measured according to four ecological traits that are linked with extinction prone-
ness19,37: population density, habitat breadth, rarity and vulnerability. SAFj (and so
MRD) was finally computed as follows:

SAFj ~
X

Fi| PHSið Þ½ � ð1Þ

DRD values corresponded, instead, to the "Unustainable Accumulated Favorability"
(UAFj) in Fa et al. (2014)19, which was computed as follows:

UAFj ~
X

Fi| 1-PHSið Þ½ � ð2Þ

Mapping SAFj and UAFj revealed the existence of two partially disjoint mammalian
assemblages, respectively located in the northern, eastern and southern margins of the
rainforest region (hence MRD), and in the Guinea-Congolian rainforest blocks
(hence DRD).

Mammalian standing biomass. We assessed wild meat availability by estimating the
standing crop mammalian biomass existing in a 1u 3 1u-resolution grid of the study
region. Standing biomass was estimated as a function of the number of occurring
species (.1 kg in weight and known to be hunted19), the mean population density of
every species, and the mean body size of each species’ individuals. Species occurrences
were taken from IUCN (2014)34, body sizes from Kingdon et al. (2013)15, and
population densities derived from various sources. Mean density data for 53 (32%)
species were taken from the PanTHERIA world mammal database38; 15 (9%) from Fa
& Purvis (1997)39; and for 97 (59%) other taxa we derived expected values from the
linear regression of log population density on log body mass. This regression, of high
statistical significance (n 5 949 species; r 5 0.574; P , 0.001), was performed using
data contained in PanTHERIA38.

To calculate the potential mammal standing biomass of a given 1u3 1u grid cell, we
first multiplied, for every species occurring in the grid, its mean population density
and mean body size. We then summed the products of these multiplications. Four
species [savanna elephant (Loxodonta africana), forest elephant (L. cyclotis), hip-
popotamus (Hippopotamus amphibius) and forest buffalo (Syncerus caffer nanus)]
were excluded from our calculations because, although hunted for meat40, are only
occasional prey, and thus do not represent an important source of wild meat.

Potential standing biomass in mammals of low hunting potential was calculated
considering only species with Potential Hunting Sustainability (PHS) , (mean PHS -
standard error, SE) (i.e. PHS , 0.06 in Appendix S1). Likewise, to calculate the

potential standing biomass of mammal species of high hunting potential we con-
sidered all species with PHS . (mean PHS 1 SE) (i.e. PHS . 0.09 in Appendix S1).

Bushmeat extraction patterns. The concentration of human populations, their
accessibility to hunting areas, as well as the presence of protected areas have been
reported as significant predictors of bushmeat extraction intensity in the Congo
Basin41. From this, we considered four relevant anthropogenic variables in our models
that could determine potential bushmeat extraction levels in our study area: (1) rural
human population density— assumed to be the population fraction engaged in
hunting42—, (2) proximity to urban areas—representing non-subsistence bushmeat
demanding areas43—, (3) proximity to roads— as a measure of access to hunting
areas—and (4) distance to protected areas — often reservoirs areas for many species
(for variable sources, see Supplementary Information). We estimated the spatial
distribution of potential bushmeat extraction throughout the RBZ, by first classifying
each of the four variables in 0.1u 3 0.1u resolution maps with a 1 if above the median,
and with a 0 if below the median. Resulting maps for each variable were finally
summed, so that areas with a total score of 4 had the highest bushmeat extraction
potential, whereas areas in with a total score of a 0 had the lowest. We assessed the
suitability of our proxy by testing the correlation with Ziegler et al.’s41 (in press) model
in the Congo Basin, using average values for both estimations on 1u 3 1u grids. Our
extraction model and Ziegler’s et al. were highly correlated (n 5 60; r 5 0.803; P ,

0.001).

Statistical methods. The consistence of the above-listed hypotheses was tested using
Structural Equation Modelling44. A set of interrelated variables were linked to each-
other according to a priori models following the working hypotheses (Appendices 3
and 4), which were designed as diagrams describing a system of possible relationships
among response and predictor variables (Fig. 5 and Fig. S1 in Appendix S1). These
variables were DRD, MRD, prevalence of stunting among children, rural human
population density, distance to urban areas, distance to roads, distance to protected
areas and domestic meat (for variable sources, see Supplementary Information).
Structural Equation Modelling, basically an extension of Path Analysis45 allowing for
model comparison, was used to assess the diagrams (hypothesis-testing studies using
this approach46–48). Cause-and-effect relationships were depicted by one-headed
arrows, and every arrow was given a path coefficient that can be either significant or
not. This coefficient is a standard partial regression coefficient45, and measures the
strength of a relationship as a proportion of the total standard deviation (Table 1).
Thus, variables that, in isolation, are highly correlated can be given low path
coefficients as a result of indirect relationships between third variables. Covariances
between independent variables were considered in the diagrams when significant
correlations were identified within the study area (n 5 60; P , 0.05). We used 60 sub-
national administrative units as the basis for the analysis (Fig. 1), because the original
data of stunting among children were only available on this geographical support20.
We, thus, used average values of the rest of variables, referred to the 60 units of
reference.

The goodness of fit of each structural equation model to data was assessed using
five parameters (table S2): (1) a x2 statistic test of the differences between observed
and expected covariance matrices, quantified by a likelihood function49; (2) the
Tucker-Lewis Index (TLI)50; (3) the Comparative Fit Index (CFI)50; (4) the Normed
Fit Index (NFI)51,52; (5) the Root Mean Square Error of Approximation (RMSEA)53,54;
the Akaike Information Criterion (AIC)55. Accepting a model requires x2 being non-
significant and as small as possible; TLI, CFI and NFI values close to one indicate a
very good fit; RMSEA should be lower than 0.1, and as small as possible. The best
model should minimize AIC as well.
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