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Abstract Complex and costly discharge measurements are usually required to calibrate hydrological
models. In contrast, water level measurements are straightforward, and practitioners can collect them
using a crowdsourcing approach. Here we report how crowdsourced water levels were used to calibrate a
lumped hydrological model. Using six different calibration schemes based on discharge or crowdsourced
water levels, we assessed the value of crowdsourced data for hydrological modeling. As a benchmark, we
used estimated discharge from automatically measured water levels and identified 2,500 parameter sets that
resulted in the highest Nash‐Sutcliffe‐Efficiencies in a Monte Carlo‐based uncertainty framework (Q‐NSE).
Spearman‐Rank‐Coefficients between crowdsourced water levels and modeled discharge (CS‐SR) or
observed discharge and modeled discharge (Q‐SR) were used as an alternative way to calibrate the model.
Additionally, we applied a filtering scheme (F), where we removed parameter sets, which resulted in a runoff
that did not agree with the water balance derived from measured precipitation and publicly available
remotely sensed evapotranspiration data. For the Q‐NSE scheme, we achieved a mean NSE of 0.88, while
NSEs of 0.43 and 0.36 were found for Q‐SR and CS‐SR, respectively. Within the filter schemes, NSEs
approached the values achieved with the discharge calibrated model (Q‐SRF 0.7, CS‐SRF 0.69). Similar
results were found for the validation period with slightly better efficiencies. With this study we demonstrate
how crowdsourced water levels can be effectively used to calibrate a rainfall‐runoff model, making this
modeling approach a potential tool for ungauged catchments.

1. Introduction

Increasing human population and climate change increase the pressure on water resources, make society
more dependent on this resource, and require practitioners to be better prepared to manage this scarce
resource more efficiently (Montanari et al., 2013; Rodda, 2001). Sustainable and effective water resource
management decisions can only be made if reliable spatial and temporal water balance information is avail-
able. The performance of hydrological models, which can offer central support in the decision‐making pro-
cess, depends on sound hydrometeorological input (Wagner et al., 2009). In contrast, the engagement and
investment of environmental agencies in hydrological and meteorological monitoring effort is decreasing
worldwide (van de Giesen et al., 2014; Vörösmarty et al., 2001). Particularly large tropical basins are suffering
from this decrease, many remain poorly gauged or were never gauged, often due to poor accessibility
(Getirana et al., 2009). In addition, data restriction policies can lead to a delay on data release
(Vörösmarty et al., 2001), which makes data use for immediate water resources management difficult espe-
cially when recent information is needed (Wagner et al., 2009). This data gap prevents the investigation of
temporal and spatial changes of relevant parameters for water resources management, which are critical
to support decision‐making and the design of for example mitigation actions to prevent natural disasters
(Davids et al., 2017).

Hydrological models can be used to investigate land use or climate change impacts on basins and to predict
and assess the effects of management decisions on water resources. The level of complexity and the required
amount of input data vary between different models. Nevertheless, all models need input and calibration
data and require a monitoring network, which can be difficult and costly to establish and maintain. In the
recent past, attempts have been made to obtain necessary data using novel ways. The increasing
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availability of remotely sensed data provides scientists with some of the important water balance variables in
regions where monitoring networks are scarce (Montanari et al., 2013). While remote sensing provides spa-
tial data of variable resolution, hydrologists are still looking for ways to obtain direct hydrometric informa-
tion such as on water levels or discharge at higher temporal and spatial resolution. So far, spaceborne remote
sensing methods provide information like water level data in a sufficient resolution for large to medium‐

sized catchments (Yan et al., 2015), but these methods are still not operational for narrow rivers (<100‐m
width) (Bandini et al., 2017).

Besides remotely sensed data, crowdsource approaches have recently become attractive in research and
capacity building campaigns from nongovernment institutions and agencies to fill hydrometeorological
monitoring gaps (Davids et al., 2017; Walker et al., 2016). Data collected by citizens can help to create
new hydrological knowledge and may support the efforts to identify the human impacts on the water cycle
(Buytaert et al., 2014; Njue et al., 2019). The fast developments of communication technology will further
increase the potential for citizen scientists to collect, submit, store, and process relevant data more easily
(Buytaert et al., 2012; Montanari et al., 2013). In order to ensure a smooth and widespread implementation,
the tasks assigned to citizens should be quick to perform and should not require special equipment. Davids
et al. (2019) showed that undergraduate researchers can conduct discharge measurements using, among
others, the salt dilution streamflowmeasurement method within reasonable ranges when compared against
professional measurements. Other studies revealed that collecting simple parameters such as water levels is
straightforward and that citizens can perform this task successfully (Fienen & Lowry, 2012; Weeser et al.,
2018) and over long periods (Lowry et al., 2019).

Recent studies proved that water level instead of discharge data can be used for model calibration by using
the monotonic relationship between water level and discharge mapped by the Spearman‐Rank‐Coefficient
(Jian et al., 2017; Seibert & Vis, 2016; van Meerveld et al., 2017). This step avoids the need to convert water
levels to discharge and potentially reduces the uncertainty introduced by this conversion (Jian et al., 2017).
However, this step can also lead to a systematic bias since no information on the total water volume is taken
into account. Therefore, there have been different attempts to include additional data during model calibra-
tion, for example, by filtering acceptable model parameters using annual streamflow volume (Seibert & Vis,
2016) or regionalized runoff coefficients from similar catchments (Jian et al., 2017). In this study, we tested a
simple Water‐Balance‐Filter, which does not rely on any previous hydrometric information other than mea-
sured precipitation and actual evapotranspiration derived from MODIS (Moderate Resolution Imaging
Spectroradiometer) data.

Using crowdsourced data for hydrological modeling is still in its infancy, and the value of this data source
has not been comprehensively tested yet. Data collected by citizens differ from traditionally collected data
in being irregular and of unknown quality and uncertainty. A few studies investigated the impact of these
before‐mentioned characteristics on the model calibration process using synthetic data sets derived from tra-
ditionally measured discharge (Mazzoleni et al., 2017; Mazzoleni et al., 2018), water levels (Seibert & Vis,
2016), or discharge combined with an error term generated from discharge estimates by citizens (Etter
et al., 2018). However, none of these studies used real crowdsourced data.

Besides the potential use of crowdsourced data, involving the community brings additional benefits. Locals,
who are supporting citizen science projects are more likely to protect environmental resources and partici-
pate in community services or sociopolitical activities (Overdevest et al., 2004). Linking this to the fact that
especially low‐income countries face pressing challenges in the water sector, it is attractive to test the inte-
gration of crowdsourced data for water resources management. To address this need, we established a com-
prehensive monitoring network based on crowdsourcing in the Sondu‐Miriu River basin in Kenya in 2016
(Weeser et al., 2018). To date, the implementation of this approach has yielded more than 5,000 records of
water levels.

This study aimed at rigorously testing the potential use of crowdsourced data for hydrological modeling,
which could support the assessment of management practices in tropical environments. It was designed
to answer the question of (1) whether water level data collected by citizen scientists are suitable for calibrat-
ing a rainfall‐runoff model with an uncertainty similar to the uncertainty resulting from a calibration with
conventional data sources and (2) if the model uncertainties can be reduced by using a simple to obtain
Water‐Balance‐Filter as an additional criterion.
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2. Materials and Methods
2.1. Study Area

The study was conducted in a headwater catchment (27.4 km2) in the northwestern part of the Sondu‐Miriu‐
River Basin in Western Kenya (0.35°S, 35.5°E WGS1984) (Figure 1). Smallholder agriculture dominates the
land use including annual crops, grazing lands, woodlands, and forests and led to a degraded land cover
(Olang & Kundu, 2011). Increasing human population has resulted in rapid forest cover loss and forest
degradation in the last decades (Brandt et al., 2018) and physical evidence has revealed a noticeable dis-
charge decline for major rivers in the region (Olang & Kundu, 2011). The soils are in general deep and well
drained classified as Humic Nitisols and Mollic Andosols (ISRIC ‐ World Soil Information, 2007).

The climate is influenced by the Intertropical Convergence Zone, resulting in a bimodal rainfall pattern with
a longer rainy season from April to July and a shorter rainy season between October and December
(Figure 2). Temperature and precipitation (Table 1) were recorded by a weather station (ECRN‐100 high‐
resolution rain gauge and VP‐3 sensor, Decagon Devices, Pullman WA, USA) located 100 m northwest of
the outlet measuring at a 10‐min resolution. The installation of the instruments was carried out as far as pos-
sible according to the WMO guidelines, whereby local conditions had to be taken into account. The resolu-
tion of the rain gauge is 0.2 mm per tip, the accuracy of the VP‐3 sensor depends on the temperature and
humidity but lies in most cases within ~0.25 °C and 2–5% humidity. Precipitation was measured at two addi-
tional sites located in the center and the upper part of the catchment using tipping buckets (Theodor
Friedrichs, Schenefeld, Germany). Thiessen‐Polygons were used to calculate the area‐weighted precipita-
tion. If precipitation data gaps existed, the weights were adjusted by omitting the tipping bucket where no
data was available. Data gaps in the temperature and precipitation time series were scarce (precipitation: tip-
ping buckets <0.1%, precipitation from the weather station 5.5%; temperature: 7.2%) and filled with a linear
interpolation after the data were aggregated to daily time steps. The yearly potential evapotranspiration
(ETpot) using grass as a reference crop was calculated based on the daily minimum, maximum and mean
temperatures and the extraterrestrial radiation using the Hargreaves equation (Hargreaves & Samani,

Figure 1. Location of the Sondu‐Miriu‐River Basin in Western Kenya (red dot in the overview map) and a map of the
study area, including the stream network, outlet, weather station, and tipping buckets. The reference grid displays coor-
dinates in WGS 1984.
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1985). These values were in line with long term, altitude depending, ETpot of 1,400 to 1,800 mm reported for
this area (Krhoda, 1988; Nyenzi et al., 1981).

Water levels were measured in two different ways. A radar‐based sensor (VEGAPULS WL61, VEGA
Grieshaber KG, Schiltach, Germany) automatically collected water level data 20 m upstream of the outlet
at 10‐min intervals. Data collected by citizens (n = 271 during the calibration period) were recorded at the
outlet (Weeser et al., 2018). The crowdsourcing‐monitoring station was installed in April 2016 and equipped
with a sign‐board that explains to locals how they can participate in the monitoring. A small reward of 0.02
USD per measurement is paid automatically to compensate for the transmission costs. The coverage in the
observation period was high with typically more than 16 observations per month covering 75% of all days
during the calibration period. The data were not further filtered. Only one obvious outlier caused by a mis-
interpretation of the received text message was removed after checking the original text message associated
with the doubtful data point. A comparison between the crowdsourced data and the automatically measured
water levels showed a high agreement between both data types resulting in a Pearson correlation coefficient
of 0.98 for the 271 measurements during the calibration period (Figure 3a). The high value of the correlation
coefficient indicates that the crowdsourced data only differs slightly from professional measurements. Note
that intercept and slope deviate from 0 and 1, respectively, due to the fact that readings from citizens were
conducted 20 m upstream from where the professional reading took place resulting in slightly different
cross sections.

A rating curve and the catchment area were used to convert the automatically measured water levels into
daily specific discharge, which was the basis for model testing and evaluation (Figure 3b). To develop the
rating curve (equation (1)), 86 manual discharge measurements using the salt dilution method (n = 82)
and an Acoustic Doppler Current Profiler (RiverSurveyor S5, SonTek, San Diego CA, USA) (n = 4) over a

Figure 2. Daily mean areal weighted precipitation using Thiessen‐Polygons (upper panel), specific discharge (middle
panel), and crowdsourced (CS) reported water level data (bottom panel) of the catchment for January 2016 to April 2018.

Table 1
Averaged Annual Hydrometeorological Data for the Study Area

Period Specific Discharge (mm) Precipitation (mm) Mean daily temperature (°C) ETpot (mm)

01 April 2016 to 31 March 2017 413 1,287 14.9 1,596
01 April 2017 to 31 March 2018 485 1,557 14.4 1,522

Note. ETpot = potential evapotranspiration calculated using the Hargreaves equation. Temperature represents the mean daily temperature measured at the
weather station at the catchment outlet.
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wide range of water levels (h) were conducted. Extrapolation below the water level of 0.236 m was done
using a quadratic function through the lowest measured discharge and zero discharge (Jacobs, Weeser,
et al., 2018). For water levels above the highest measured water level used to develop the rating curve
(0.66 m), we extrapolated the discharge using the same rating curve (3.3% of the time). To assess the dis-
charge uncertainty we followed the procedure described in Jacobs, Weeser, et al. (2018), where the uncer-
tainty was estimated based on the standard deviation (SD) of repeated measurements (SD water level: 1
mm, SD ADCP: 6.2%, SD Salt Dilution: 6.9%). We assumed that the true values were within 3*SD and gen-
erated 10,000 random samples for each water level/discharge combination. Figure 3b shows the uncertainty
95% confidence interval for the rating curve.

Q ¼ 0:0973−1:892·hþ 6:923·h2; h≥0:236 m
0:651·h2; h<0:236m

R2 ¼ 0:98

(
(1)

2.2. Model Setup

We developed a lumped conceptual rainfall‐runoff‐model (Figure 4) using
the Catchment Modelling Framework (Kraft et al., 2011) Version 1.4.1
(Kraft et al., 2018) for Python 3. Catchment Modelling Framework is a
python based programing library to build hydrological models from build-
ing blocks (Jehn et al., 2018). This framework has been applied to a variety
of catchments and is considered to describe the underlying hydrological
processes sufficiently well (Jehn et al., 2018; Maier et al., 2017;
Windhorst et al., 2014). The model structure represents the conceptual
understanding of the rainfall‐runoff processes reported by Jacobs,
Timbe, et al. (2018). Daily precipitation and ETpot are the only model
inputs required.

In the model, water storage is represented as a single storage volume (V),
which receives water from infiltration and loses water to the catchment
outlet and actual evapotranspiration (equation (2)). Precipitation (P) is
partitioned into infiltration (qinf) and direct runoff (qsurf) by saturation
excess (esat) (equation (3)). Since the soil saturation happens only in parts
of the catchment area, depending on the stored volume, the saturated area
is modeled with the Boltzmann sigmoidal function based on the soil water

Figure 3. (a) Correlation between automatic water level measurements and crowdsourced water level data (Pearson cor-
relation r = 0.98, n = 271) for the calibration period and (b) rating curve (solid blue line) with 95% confidence interval
(blue shaded band) for the outlet of the study area based on 86 water level discharge pairs (black crosses).

Figure 4. Schematic model structure. Catchment Modelling Framework
processes are given in bold and their parameters in italic letters. Oval
structures represent sinks, the hexagon an input flux, the box a storage, and
the rhombus a distribution node without storage functionality.
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storage and a parameter W1/2. The parameter W1/2 represents the saturation at which half of the incoming
water infiltrates and the other half is routed to the outlet without time lag. Water in the storage box is
released to the outlet using the normalized water volume raised to a power. This power law equation
(equation (4)) determines the outflow (qout) based on the actual water volume stored in the box (V) and
the parameters V0 (reference volume), Q0 (outflow from the source when V equals V0), and β (shape of
the response curve). Water in the storage box is subject to evapotranspiration where the daily ETpot is
limited by the available water in the storage box. Actual evapotranspiration is assumed to be equal to the
potential evapotranspiration if the water volume in the box is greater than the factor fETV1 multiplied by
the box capacity. If the volume is lower, the actual evapotranspiration is linearly scaled down to 0.

We used the implicit, error‐controlled CVode solver (Hindmarsh et al., 2005) to integrate the differential
equation (equation (2)) to prevent numerical problems (Kavetski & Clark, 2011). A priori model parameter
ranges (Table 2) were chosen based on expert knowledge from previous applications of comparable model
types and an exploratory analysis of a large parameter space.

dV
dt

¼ qinf P;Vð Þ−qout Vð Þ−fET Vð Þ·ETpot tð Þ (2)

qsurf V ;Pð Þ ¼ esat VW 1
2

� �
Pqinf ¼ P−qsurf ¼ 1−esat VW1=2

� �� �
(3)

qout ¼ Q0
V
V0

� �β

(4)

2.3. Model Calibration and Validation

The time series were split‐up in a warm‐up period (1 January 2016 to 31 March 2016), a calibration period (1
April 2016 to 31 March 2017), and a validation period (1 April 2017 to 31 March 2018). We followed a Monte
Carlo‐based calibration approach and quantified the model parameter uncertainty using the open‐source
python package SPOTPY (Houska et al., 2015). We evaluated the calibration efficiency using two objective
functions, that is, Nash‐Sutcliffe‐Efficiency (NSE, equation (5), where ei is the ith observation, si is the ith
simulation, and e is the mean of the observations) (Nash & Sutcliffe, 1970) and percent bias (PBIAS; equa-
tion (6)). While the NSE is mainly influenced by peaks and therefore ensures an acceptable model fit during
high flow conditions, the PBIAS indicates the tendency of overestimation or underestimation of the dis-
charge through the model over the full period. In total, 106 parameter sets were generated for the calibration
process within predefined (a priori) parameter ranges (Table 2). Instead of sampling the entire parameter
space, we used Latin Hypercube Sampling (McKay et al., 1979).

NSE ¼ 1−
∑N

i¼1 ei−sið Þ2
∑N

i¼1 ei−eð Þ2 (5)

PBIAS ¼ 100*
∑N

i¼1 ei−sið Þ
∑N

i¼1 eið Þ (6)

2.3.1. Using the Spearman‐Rank‐Coefficient to Calibrate on Water Level Data
To calibrate the model on water level data, we took advantage of the fact that water levels are dynamically
linked to discharge variation and that they can, therefore, be compared against modeled discharge by using

Table 2
Model Parameters and A Priori Ranges

Name Meaning Unit

A priori parameter ranges

Min Max

β Kinematic flow curve shape exponent — 1 6
Q0 Reference runoff when storage contains the reference volume V0 mm day−1 0.01 1,000
Vo Reference volume where storage runoff is equal to Q0 mm 100 3,000
fETV1 Scaling factor for potential evapotranspiration — 0.01 0.8
W1/2 Saturation, where half of the catchment area is saturated — 0.1 0.9
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the Spearman rank correlation coefficient (RSpear) (Seibert & Vis, 2016). Ranging from −1 to 1, an RSpear

close to 1 indicates that the simulated discharge and themeasured water levels reproduce the same dynamics
and that the water level and discharge values are strictly monotonically related (Seibert & Vis, 2016). The
RSpear is not affected if the data is transformed using a strictly monotonically increasing or decreasing func-
tion as done by the rating curve in this study. In this case, the RSpear values will be similar regardless if the
automatically measured water level data (which was converted into discharge data using the rating curve) or
the discharge data itself is used. Consequently, we do not show a calibration based on the automatically mea-
sured water level data since the results are the same as obtained from a discharge‐based calibration.

Since the Rspear only reflects the similarity of the dynamics between the observed discharge and water level
data and does not reflect the absolute volumes, a value of 1 does not ensure a perfect fit (Seibert & Vis, 2016).
Therefore, a threshold for behavioral parameter sets cannot be defined similarly to a calibration based on
objective functions like the NSE. Instead, we propose to select behavioral parameter sets by ranking all
model runs by their associated RSpear value and take the top set. In this study, we defined behavioral para-
meter sets by taking the best 0.25% of the 106 runs, resulting in 2,500 parameter sets. The same procedure
of taking the best 0.25% was applied when the model was calibrated on discharge data and the NSE to ensure
the comparability of the different calibration schemes.
2.3.2. Water‐Balance‐Filter
As stated above, utilizing water level readings for calibrating a model to calculate discharge can lead to over-
estimation or underestimation. Therefore, we tested a simple annual Water‐Balance‐Filter to obtain accep-
table model outputs by selecting only those parameters sets where model runs resulted in a high RSpear and
additionally matched a simplified water balance. The annual water balance was calculated from observed
precipitation minus mean actual evapotranspiration (ETact). ETact can be retrieved from spaceborne remote
sensing data sets obtained from the MODIS. For the study area, a mean ETact of 1,055 mm yr−1 was derived
from data provided by the MOD16A2 Collection 6 Global Evapotranspiration Product fromMODIS imagery
based on land surface temperature and albedo and the Penman‐Monteith equation (Running et al., 2017) for
the 2‐yr simulation period. These values are close to the estimation from our measured data when we sub-
tract runoff from precipitation assuming that possible storage changes can be considered small enough to be
ignored for the 2‐yr period and the remaining water consequently represents the ETact (Senay et al., 2011).
From our measured data we derived an ETact of 973 mm on average for the 2 yr, which is 7.7% less than
the value determined using the MODIS data set. The MOD16A2 Collection 6 data set, obtained from the
satellite Terra, contains composite evapotranspiration data with 500‐m pixel resolution for 8‐day periods.
In order to calculate the annual ETact each satellite image was cropped to the catchment area, fill values
without calculated ET were set to unavailable, the result was multiplied by 0.1 (scale factor after Running
et al., 2017) and a mean value for the catchment area was calculated. In order to determine the annual value,
all individual values were summed up. To compensate measurement errors, unknown uncertainties and
possible storage changes we added a (subjective) confidence interval of ±30%, resulting in an ETact between
738 and 1,371 mm yr−1 (ETact/ETpot‐ratio = 48–88%) for the study area. This value is in line with a study of
Velpuri et al. (2013), which reported mean uncertainties up to 25% for MOD16 data sets at basin scale. Given
the average annual precipitation over the 2‐yr observation period of 1,422 mm (Table 1), model runs were
discarded if the simulated specific discharge was >684 or <51 mm yr−1.
2.3.3. Calibration Schemes
Six independent calibration schemes were carried out to evaluate the value of crowdsourced water level data
for model calibration. As a benchmark, we first calibrated the model on the discharge data using both the
Nash‐Sutcliffe‐Efficiency and the Spearman‐Rank coefficient (schemes Q‐NSE and Q‐SR). After that, we
calibrated the model on the crowdsourced water level measurements and did not consider any automatically
measured water level or discharge data (CS‐SR). Finally, all accepted parameters from the different calibra-
tion schemes were filtered using the Water‐Balance‐Filter (Q‐NSEF, Q‐SRF, CS‐SRF).

2.4. Model Comparison (Benchmark)

The model was validated by conducting runs for the validation period using the a posteriori parameter sets,
comparing the modeled with observed discharge. To compare the model efficiencies between the different
calibration schemes, we defined a lower benchmark (Rlower) following an approach described by Seibert
et al. (2018). For this, we run the model 2,500 times with random parameter sets within the a priori
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parameter ranges (Table 2). From these 2,500 model runs, a mean dis-
charge time series was calculated and compared against the observed dis-
charge for both, the calibration and validation period. The upper
benchmark (Rupper) was defined as the best efficiency obtained during
the discharge‐based calibration assuming that this value reflects the best
possible calibration of the model for the given data set. The relative perfor-
mance (RRelative) of each calibration scheme can then be determined fol-
lowing equation (7), whereby Rx indicates the performance reached for
each individual calibration scheme

RRelative ¼ Rx−Rlower

Rupper−Rlower
(7)

3. Results
3.1. Lower and Upper Benchmark

To compare the efficiencies of the different model calibration scenarios a
lower benchmark was defined by randomly selecting 2,500 model runs
and calculating a mean discharge time series, which was compared
against the observed discharge values. A NSE of −0.56 and a PBIAS of
97.51% was found as a lower benchmark for the calibration period. For
the validation using the same 2,500 random parameter sets, the NSE
was 0.13 and the PBIAS 111.31%. The highest performance measure
within the Q‐NSE scheme defined the upper benchmark, resulting in an
upper NSE benchmark of 0.93 and a PBIAS of 0%. All schemes resulted
in at least one parameter set with similar best performance measures for
all schemes.

3.2. Discharge‐Based Calibration (Q‐NSE and Q‐SR)

The model simulated observed discharge reasonably well when calibrated
against discharge using the Q‐NSE scheme (Table 3). Under this scheme
the model achieved a mean NSE of 0.88 and a relative NSE performance
for the mean of all runs of 96.6% (relative performance of PBIAS 99.1%)
when compared against the upper and lower benchmark of the Q‐NSE
scheme. The parameter sets which achieved the best 0.25% (equals 2500)
NSE values (Q‐NSE) or RSpear values (Q‐SR) were considered as behavioral
and were accepted for further analysis. When testing the behavioral para-
meter sets of Q‐NSE against the validation time series the model perfor-
mance was only marginally lower achieving a mean NSE of 0.86 and a
relative NSE performance 91.3% (relative performance of PBIAS 93.8%).

Calibrated on discharge but using 0.25% of all parameter sets with the
highest RSpear instead of NSE (Q‐SR) the model performance decreased
achieving a mean NSE of 0.43 and a relative performance of 66.4%. The
mean PBIAS increased from –0.88% (Q‐NSE) to 52% during calibration.
The same trend was followed during validation with similar
performance measures.

3.3. Crowdsourced Calibration (CS‐SR)

The model predicted the observed discharge within acceptable ranges
when calibrated and validated against the crowdsourced water level data
without applying the Water‐Balance‐Filter. The mean NSE performance
decreased by 34.9% during calibration in comparison to the Q‐NSE
scheme to similar values than the ones achieved with theQ‐SR calibration
scheme. However, the CS‐SR scheme outperformed the lower benchmarkT
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model. The PBIAS revealed a decrease of the relative performance of 58.9% in relation to the relative
performance of the PBIAS during calibration for the Q‐NSE scheme. A comparable decrease could be
observed during validation. Since the mean PBIAS is >0 in all cases, the CS‐SR schema tends to
overestimate the overall discharge.

3.4. Water‐Balance‐Filter Effects on the Calibration (Q‐NSEF, Q‐SRF, CS‐SRF)

No differences were observed between the Q‐NSE and the Q‐NSEF scheme since all accepted parameter sets
within the Q‐NSE scheme already matched the water balance and subsequently no parameter set was dis-
carded. For all RSpear‐based calibration schemes, the filter improved the model performance notably. This
holds regardless of the data set used for both the discharge‐based calibration (Q‐SR) and the crowdsourced
water level data calibration (CS‐SR). The relative performance for these calibration schemes increased to
comparable values between 84% and 86% during calibration and validation for NSE and between 66% and
72% for PBIAS. Hence, calibrated with crowdsourced water level data combined with the Water‐Balance‐
Filter (CS‐SRF), the model predicted the discharge almost as well as if calibrated on the observed discharge
(Q‐NSE). This applies for the behavior of both model efficiency measures, the NSE and the PBIAS.

Figure 5 shows the modeled discharge time series during calibration and validation for the Q‐NSE scheme
and the crowdsourced‐based calibration scheme (CS‐SR and CS‐SRF). This figure underlines the similarities
and differences between the different calibration methods. In general, all calibration schemes tended to
slightly overestimate base flow conditions. Remarkably, all schemes resulted in similar lower discharge
bands and only the upper discharge band deviated for the scenario CS‐SR compared to the scenarios CS‐
SRF and Q‐NSE, which was also reflected in the PBIAS.

3.5. Comparison of Different Calibration Schemes

We analyzed specific flux components simulated by the model to further understand and evaluate the model
behavior regarding the different calibration schemes. This allowed us to assess whether the simulated pro-
cesses are within realistic boundaries and whether the different calibration schemes influence the hydrolo-
gical fluxes. A large discrepancy between the individual fluxes would be questionable and indicate a
mismatch between the model simulations and the underlying processes. The same applies to abnormally

Figure 5. Observed precipitation (top) and discharge (black dashed line in the lower box) in the study area from April
2016 to March 2018. Simulated discharge for three different calibration schemes during calibration and validation (from
light blue to dark blue: CS‐SR, CS‐SRF, and Q‐NSE), where Q‐NSE indicates a traditional calibration against observed
discharge data, CS‐SR a calibration against 2,500 runs with the highest Spearman‐Rank‐Coefficient when calibrated
against the crowdsourced water level data and CS‐SRF a calibration using the same runs obtained from CS‐SR but filtered
for a maximum yearly runoff based on an estimated water balance using observed precipitation and actual evapotran-
spiration derived from MODIS.
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large or small values for the actual evapotranspiration. In addition, the analysis provides insights into the
range of the simulated flows under the various calibration schemes and thus into the related model
uncertainties. Figure 6 shows the distribution of the sums of each flux for every model run within the
calibration schemes for the validation period (the figure for the calibration is similar and not shown)
excluding the Q‐NSEF scheme, because of its redundancy to the Q‐NSE scheme. The results reveal an
equal distribution of the modeled flux components for all five calibration schemes. The variability in
fluxes is smallest for the Q‐NSE scheme and increases for the filtered (Q‐SRF, CS‐SRF) and unfiltered (Q‐
SR, CS‐SR) schemes. For example, the range of simulated ET values under Q‐SR was largest (359–1,076
mm), and the contribution to the total water balance was on average (mean 693 mm) lower than for Q‐
NSE (mean 940 mm). Consequently, more water left the system from the storage box to the outlet in the
Q‐SR scheme compared to Q‐NSE. This can also be seen in the time series where the Q‐SR scheme
(similar to the CS‐SR scheme) tends to overestimate the flow (Figure 5). The distributions within the
unfiltered or filtered calibration schemes are comparable. Consequently, the RSpear calibrated data sets
show a similar distribution regardless of whether they were calibrated to the discharge or the citizen‐
based water levels. The proportion of surface runoff (SW) was low for all three methods. This is in line
with the general process understanding for this catchment and its environmental conditions (Jacobs,
Timbe, et al., 2018). Surface runoff can occur during heavy rain events but remains low. A high fraction
of surface runoff would, therefore, not be realistic.

4. Discussion

To date, integrating crowdsourced data into hydrological monitoring remains uncommon with only a few
studies that examined the value of these data for model calibration (Etter et al., 2018; Mazzoleni et al.,
2017; Starkey et al., 2017). All these studies, however, lack a direct comparison between a model driven
by real‐world crowdsourced data and a model calibrated using conventionally collected discharge measure-
ments. Some of the studies used synthetically generated data to mimic crowdsourcing. In contrast, our study
compares the efficiencies of a model calibrated on crowdsourced water levels, combined with or without a
Water‐Balance‐Filter, against results from a model calibrated on measured daily discharge. Projects like
CrowdHydrology, which resulted in more than 16,000 observations since 2010 ongoing, proved that it is

Figure 6. Boxplots of the sum of fluxes released by the different model components (ET = actual Evapotranspiration,
SB‐> River = Water released from the Storage Box to the Outlet, SW‐> River = Water released from the Surface
Water Storage to the Outlet) under different model calibration schemes (CS‐SR = calibration based on crowdsourced
water level data; Q‐SR = calibration based on discharge and the Spearman‐Rank‐Coefficient; CS‐SRF = calibration based
on crowdsourced data in combination with a Water‐Balance‐Filter; Q‐SRF = calibration based on discharge and the
Spearman‐Rank‐Coefficient data in combination with a Water‐Balance‐Filter; Q‐NSE = traditional calibration process
based on discharge data and the Nash‐Sutcliffe model efficiency coefficient) during the validation period.
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possible to gather this type of data, also over extended periods (Lowry et al., 2019). We found that the model
calibrated with crowdsourced water levels combined with a Water‐Balance‐Filter performs similarly in
terms of model efficiencies but results in greater model uncertainties and overestimations of discharge.

4.1. Assessing Model Performance Through Spearman‐Rank‐Coefficient

The Spearman‐Rank‐Coefficient (RSpear) used to identify behavioral parameter sets during calibration
allowed a comparison of the dynamics of the simulated discharge and measured water levels but revealed
no information on total discharge volumes (Jian et al., 2015). There are no previous reports as to which para-
meter sets should be declared as behavioral when using the RSpear as an objective function. Consequently, we
ranked all parameter sets by their RSpear value and chose a certain percentage (0.25% of 106 runs) as beha-
vioral. An advantage of using the RSpear is that for example no extra Inverse Rating Curve function with addi-
tional uncertainties needs to be estimated (Jian et al., 2015) and that water levels can directly be used to
calibrate the model. This avoids the tedious process of discharge measurements, which also requires special
equipment and expert knowledge, often not available particularly in remote places in low‐income countries.
This might change in the future when new methods to determine discharge like particle‐image‐velocimetry
(Adrian, 1991) produce sound results, especially when such approaches become operational on consumer
electronic devices like smartphones as shown by Lüthi et al. (2014). We believe, however, that water level
measurements carried out by citizen scientists remains easier, reduces measurement errors, requires no
expert knowledge, delivers reliable measurements, and can promote community participation (Lowry &
Fienen, 2013; Weeser et al., 2018).

4.2. The Value of a Water‐Balance‐Filter

As stated above, a risk exists that a hydrological model might be biased when only calibrated with water level
data. Seibert and Vis (2016) addressed this issue when calibrating a model for more than 600 catchments in
the United States using daily water level and discharge data. Their study revealed that models that were cali-
brated on water levels performed well in wet catchments where the precipitation input was higher than the
potential evapotranspiration. Seibert and Vis (2016) related this to the fact that the actual evapotranspiration
in these catchments was close to the potential evapotranspiration which diminished the influence of differ-
ent parameter sets on this term of the water balance. Our results confirmed these findings by showing accep-
table results in a catchment with precipitation values close to potential evapotranspiration. At the same
time, these results indicate that a more intense testing of the approach under different environmental con-
ditions is needed. The hydrological behavior of different catchments might or might not have a further
impact on the transferability of our approach, which we finally cannot decide based on a single catchment
study. Seibert and Vis (2016) indicated that some volume information might improve the results for drier
catchments and the authors stressed the need for further research on this field. In our study, we tested the
added value of a Water‐Balance‐Filter on the parameter set selection to reduce the risk of selecting para-
meter sets that result in biased model calibration. However, we have to point out that the uncertainty of
the actual evapotranspiration derived from the MODIS data set cannot be determined precisely since it
depends on various local factors. Mu et al. (2011) identified uncertainties in the used algorithm input data
(such as the daily meteorological data), inaccuracy of themeasured eddy covariance flux tower data, the scal-
ing from the flux tower point measurements to the landscape and algorithm limitations as main factors,
which influence the bias between estimated andmeasured ETact. When we compared the derived ETact from
MODIS with our measured precipitation minus the measured discharge and neglected storage changes
(Senay et al., 2011), we found an overestimation for the remotely sensed actual evapotranspiration of
7.7%. After applying the uncertainty compensation of ±30%, the resulting Water‐Balance‐Filter range falls
within the measured ETact value. Consequently, our CS‐SRF and Q‐SRF results showed that the model effi-
ciencies improved when those parameter sets, which were selected as behavioral in the first step using the
RSpear, were further filtered. The filter effectively removed model runs that resulted in a discharge overesti-
mation. In contrast to that, these runs were accepted within the unfiltered RSpear‐based calibration schemes
(CS‐SR, Q‐SR) since no volume information was considered.

All schemes resulted in fluxes that were in line with the general process representation. The analysis of the
individual fluxes showed that the different schemes did not change the general process understanding of the
model. Evapotranspiration was calibrated differently, which resulted inmore water draining into the river in
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the crowdsource‐based model schemes. Having in mind that the approach should be applicable under
remote conditions or in understudied catchments, we developed a filter that can be easily derived from pub-
licly available data sources rather than aiming for a high precision of the filter itself. The uncertainty factor
(30%) we used to define the Water‐Balance‐Filter based on the measured precipitation and remotely sensed
evapotranspiration might deviate for other input data or catchments. We, therefore, argue that a wide range
should be chosen. Since the filter only reduces the previously selected parameter sets but does not affect the
calibration process itself, the filter has no negative influence on the results. Our results show that including
such a simple filter in the a posteriori model selection process reduces effectively the bias that is inherent
when calibrating the model using RSpear as an objective function.

In general, the increasing availability of remotely sensed data brings new opportunities to obtain relevant
water balance variables, particularly in regions where in situ monitoring networks are sparse (Montanari
et al., 2013), although the spatial resolution is coarse and ground‐truthing often is required. The sparse
repeat cycle of satellite data hampers the measurement of daily or weekly changes further (Jian et al.,
2017) making it impossible to detect or quantify short events which are typical for tropical catchments.
Therefore, the combination of crowdsourced observations with remotely sensed data could be a way to sup-
port hydrological modeling in areas where no or only limited hydrometric information is available.

4.3. The Role of Input Data and Innovative Input Data Sources

Besides water levels, we used precipitation and temperature‐based calculated evapotranspiration as inputs
for our model. The quality and resolution of these data influence the model performance. We used precipita-
tion and temperature data from automatic meteorological stations, with a controlled quality to demonstrate
the feasibility of calibrating a model using crowdsourced water levels. However, these data might not be
available in all cases and can become an additional error source. For larger catchments, where the spatial
resolution might be less important which can lead to smoothing effects, these data could be derived from
remote sensing or interpolated using measurements from existing meteorological stations. Beyond that, it
is possible that precipitation and temperature measurements are performed by citizen scientists. Starting
in 1998 as a local project the CoCoraHS (the Community Collaborative Rain, Hail, and Snow network)
became the largest provider of daily manual rainfall measurements in the United States with 37,500 partici-
pants and over 31 million crowdsourced daily precipitation reports (Reges et al., 2016). A study by Walker
et al. (2016) showed that an Ethiopian community monitored precipitation sufficiently for 18 months result-
ing in a high correlation between the crowdsourced data and data from a national station. By using a
community‐based rain gauge network, a high spatial resolution might compensate a potentially lower data
precision since local rain events can be captured, which cannot be detected by coarser professional networks
(Kirchner, 2006). Technical development opens the potential for new and alternative data collection meth-
ods which could contribute to improved availability of data. Overeem et al. (2013), for example, showed the
possibility to estimate daily mean air temperatures from smartphone battery temperatures, while Messer
et al. (2006) described a method how the signal levels of cellular networks can represent precipitation
amounts. Gosset et al. (2016) claimed that this technique is particularly suitable for areas that lack precipita-
tion measurement infrastructure including large parts in Africa. Linking data from different and innovative
methods together may have great potential for hydrological modeling.

4.4. Model Structure and Data Resolution

The conceptual model used in this study involved only five parameters, which allowed a consistent calibra-
tion and avoided over‐parameterization (Kirchner, 2006). Furthermore, since few parameters are involved,
the model can be easily applied in data scarce regions. However, a more complex physically based and/or
spatially distributed model might have benefits by providing the opportunity to use observed data from var-
ious sources and locations and integrate them into themodel approach (Starkey et al., 2017). Mazzoleni et al.
(2017) demonstrated the use of synthetically generated crowdsourced streamflow observations in a spatially
distributed model to improve flood predictions. These authors showed that the temporal variability of data
influenced the results less than their accuracy, which confirms the usefulness of crowdsourced data given
that their accuracy is assured. However, even the resolution of the water level scale (vertical resolution) is
not an exclusion criterion. For example, van Meerveld et al. (2017) demonstrated that the vertical resolution
of water level measurements is less critical. These authors used a time series of only two stream level classes
to calibrate a conceptual model successfully. These findings may further increase the applicability of
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crowdsourced data as it allows the use of data with reduced vertical resolution and hence reduced accuracy
and temporal resolution. A study by Seibert et al. (2019) showed that virtual water level gauges, generated by
amobile application, can be used to monitor water levels in any streamwithout physical installations, which
can make the approach scalable. These results indicate a promising way to increase the spatial coverage of
crowdsourced measurements in future.

4.5. Crowdsourced Versus a Discharge‐Based Calibration

The often expressed concern that data irregularity induces problems can therewith be mitigated. Our study
confirms this assumption since no evidence was found that data irregularity within the crowdsourced data
affected the model performance and the model could be calibrated using the crowdsourced data which had a
variable temporal resolution and measurement uncertainty. The crowdsourced‐based calibration schemes
led to comparable results as the discharge‐based calibration when using the RSpear performance measure.
The increased uncertainty is therefore mainly induced by using the RSpear and only marginally by the crowd-
sourced data itself. The crowdsourced data only led to a decrease of the relative performance of around 5%
for both the NSE and PBIAS during calibration (CS‐SR) in comparison to the discharge‐based calibration (Q‐
SR). Compared to the NSE‐based calibration (Q‐NSE) the relative performance decreased by 30–35% under
the RSpear‐based schemes regardless of the model was calibrated on discharge or crowdsourced water level
data (Q‐SR and CS‐SR).

5. Conclusions

Based on our results, we suggest crowdsourced monitoring approaches as an additional tool for water
resources management, particularly in ungauged or poorly gauged catchments and under limited financial
resources. Combining simple measurement carried out by citizen scientists with a modeling approach could
be a way to improve our knowledge of available water resources and process understanding in catchments
that have so far been understudied. This approach may be an alternative in places where observational gaps
are caused by a lack of hydrometeorological gauging networks. However, some limitations are worth noting.
Although our findings provide evidence that crowdsourced water levels can be used to calibrate hydrological
models, the outcome also depends on the quality of other input data and the general catchment behavior.
Our study area only had a few flooding events and the water balance seems to be fairly simple.
Consequently, the observed discharge could be modeled well using a simple model structure. The crowd-
sourced data we used in this study are from outstanding quality with high temporal coverage and low mea-
surement errors. Future work should, therefore, investigate the behavior of crowdsourced calibrated models
for catchments of different land use and climatic conditions, test the implementation of crowdsourced cli-
mate data and investigate the impact of crowdsourced data of various quality.

Based on our evidence, we provide the following answers to the research questions raised in section 1:

1. Are water levels collected by citizen scientists suitable for calibrating a rainfall‐runoff model with an
uncertainty similar to the uncertainty resulting from a calibration with conventional data sources?

A conceptual rainfall‐runoff model can be calibrated on crowdsourced water level data. The combination of
crowdsourced data and a rainfall‐runoff‐model might solve an often raised critical point when using crowd-
sourcing in hydrology, that is, data irregularity. After a 1‐yr calibration, the model transforms the
community‐based collected data into a continuous time series. This is particularly valuable when one con-
siders that only water levels were used for calibration and no discharge measurements had to be carried
out, which would have required special equipment and training of the citizen scientists. The model, which
was only calibrated against water level data, predicts the observed discharge in acceptable ranges, but the
efficiencies were lower than the efficiencies of a model that was calibrated on conventional discharge data.
However, the lower efficiencies are mainly introduced by using the RSpear as a performance measure, which
leads to an overestimation of the discharge.

2. Can themodel uncertainties be reduced by using a simple to obtainWater‐Balance‐Filter as an additional
criterion?

By applying a simple Water‐Balance‐Filter it was possible to achieve model efficiencies similar to those
obtained from traditional calibration against streamflow. We used a parsimonious water balance derived
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from measured precipitation and remotely sensed evapotranspiration data, avoiding data‐intense estimates.
Similar water balances can be established in other data‐sparse regions. Combining the filter with the
rainfall‐runoff model increased the model reliability. The filter can compensate the effect of keeping para-
meter sets that result in unrealistic high or low volumes, which can occur when using the Spearman‐
Rank‐Correlation as an objective function. To achieve this effect, the uncertainty of the remotely sensed
actual evapotranspiration data should not have led to values that are too far from the real actual evapotran-
spiration in the respective catchment.
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