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Modeled oil palm peat GHG emissions
decreased over the rotation.

Annual GHG variations are related to
precipitation, water table, soil C:N and
mineral N.

Oil palm peat GHG emission factors
should consider temporal variations in

=
a

16

[
>
—
=

Y]
Peat N,O emissions, kg N ha't yrt

-
N}

.
=
15
-
o

Peat onsite CO, emissions, Mg C ha'l yr!
-

emissions.

8

6 6

4 4

2 2

0 . " 0

1 5 9 13 17 21 25 29
Qil palm plantation age, years
ARTICLE INFO ABSTRACT

Editor: Wei Shi Oil palm plantations on peat and associated drainage generate sizeable GHG emissions. Current IPCC default emission
factors (EF) for oil palm on organic soil are based on a very limited number of observations from young plantations,
Keywords: o thereby resulting in large uncertainties in emissions estimates. To explore the potential of process-based modeling
Greef‘h(l’use glas ((iGHG) emissions to refine oil palm peat CO, and N,O EFs, we simulated peat GHG emissions and biogeophysical variables over 30
E;ﬁg‘_iepc ?;:I; years in plantations of Central Kalimantan, Indonesia. The DNDC model simulated well the magnitude of C inputs
DNDC & (litterfall and root mortality) and dynamics of annual heterotrophic respiration and peat decomposition N»O fluxes.
Carbon dioxide The modeled peat onsite CO,-C EF was lower than the IPCC default (11 Mg C ha~ ! yr ') and decreased from
Nitrous oxide 7.7 + 0.4 Mg C ha~! yr ™! in the first decade to 3.0 + 0.2 and 1.8 + 0.3 Mg Cha™' yr™! in the second and

third decades of the rotation. The modeled N,O-N EF from peat decomposition was higher than the IPCC de-
fault (1.2 kg N ha~ ' yr ') and increased from 3.5 + 0.3 kg N ha~! yr~! in the first decade to 4.7-4.6 +
0.5 kg N ha™ ' yr~! in the following ones. Modeled fertilizer-induced N,O emissions were minimal and much less than
1.6% of N inputs recommended by the IPCC in wet climates regardless of soil type. Temporal variations in EFs were strongly
linked to soil C:N ratio and soil mineral N content for CO, and fertilizer-induced N,O emissions, and to precipitation, water
table level and soil NH; content for peat decomposition N,O emissions. These results suggest that current IPCC EFs for oil
palm on organic soil could over-estimate peat onsite CO, emissions and underestimate peat decomposition N,O emissions
and that temporal variation in emissions should be considered for further improvement of EFs.
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1. Introduction

Tropical peatlands are an important terrestrial carbon (C) sink (Yu et al.,
2010), but as a result of intensifying anthropogenic disturbance, they have
become a growing source of greenhouse gas (GHG) emissions to the atmo-
sphere (Frolking et al., 2011; Huang et al., 2021; Leifeld et al., 2019; Leifeld
and Menichetti, 2018). In Southeast Asia, which holds a large proportion of
global tropical peatlands (Gumbricht et al., 2017), expansion of oil palm
plantations dominates patterns of land-use change in peat swamp forests
(Miettinen et al., 2012, 2016; Schoneveld et al., 2019). Conversion of
peat forest to oil palm entails drainage of soils, land-clearing fires, drastic
changes to vegetation cover, and fertilizer application, profoundly altering
peat chemistry and transforming the ecosystem from a potential C sink to a
large net GHG source (Hergoualc'h and Verchot, 2014; McCalmont et al.,
2021; Swails et al., 2021).

When intact, peatlands are seasonally or permanently water-logged eco-
systems where vegetation litter input exceeds soil organic matter (SOM) de-
composition, leading to the accumulation of carbon-rich peat deposits.
Conversion and drainage of peatlands accelerates aerobic peat decomposi-
tion as the result of increased oxygen availability, leading to increased CO,
emissions from heterotrophic respiration (Hergoualc'h et al., 2017; Itoh
etal., 2017), while changes to vegetation alter C inputs to peat from above-
ground litterfall and root mortality (Hergoualch and Verchot, 2014). CH,
emissions from anaerobic peat decomposition are decreased by peatland
drainage (Hergoualc'h and Verchot, 2012). The impact of drainage on
N,O emissions from tropical peatlands is inconsistent, with both undrained
and drained peat soils acting as a N,O source (Pérn et al., 2018). In lands
converted for agriculture, nitrogen (N) fertilization stimulates peat N,O
emissions (Chaddy et al., 2019; Oktarita et al., 2017; Sakata et al., 2015).
In oil palm plantations, biogeophysical drivers of peat GHG fluxes — water
table level (Chaddy et al., 2019; Melling et al., 2005), soil moisture
(Chaddy et al., 2019; Manning et al., 2019; Marwanto and Agus, 2014),
soil temperature (Manning et al., 2019; Oktarita et al., 2017), vegetation
productivity (Hergoualc'h and Verchot, 2014; Swails et al., 2021), and
peat chemistry (Swails et al., 2018) — vary temporally and micro-spatially
according to management practice and geographic location, thus driving
enormous heterogeneity in peat GHG emissions (Swails et al., 2021).
Given the considerable spatio-temporal variability in peat GHG fluxes, as-
sessment of peat GHG emissions from oil palm plantations is challenging.

Countries report their GHG emissions to the UNFCCC (United Nations
Framework Convention on Climate Change) using guidelines developed
by the Intergovernmental Panel on Climate Change (IPCC). The 2013 Wet-
land supplement provides in Chapter 2 (Drosler et al., 2014), default Tier 1
emission factors (EF) for oil palm plantations on organic soil for quantifying
peat emissions of CO, onsite, N>O emissions from peat decomposition, and
peat CH,4 emissions. N,O emissions from N fertilizer application are ac-
counted for separately using national fertilizer application data regardless
of soil type following the 2019 refinement of the 2006 guidelines
(Hergoualc'h et al., 2019). The IPCC defines the onsite peat CO, EF as the
difference between C inputs to peat from vegetation litter (the sum of
aboveground litterfall and root mortality) and C outputs from aerobic
decomposition of organic matter (or heterotrophic respiration). While
measurements of total soil respiration are relatively straightforward,
partitioning of total soil respiration into autotrophic and heterotrophic
components is more difficult. Also, assessment of belowground litter inputs
from root mortality is challenging. Separating N,O emissions from peat
decomposition and emissions induced by fertilizer application requires
intensive and spatially stratified sampling which is laborious.

While field measurements are constrained by time and budget, process-
based models offer the possibility to test hypotheses for improving EF by
simulating processes that are relevant to peat GHG production and uptake.
Using process-based models, EF can be simulated and simple empirical re-
lationships between GHG emissions and drivers can be derived from
modeled data. Presently, process-based modeling has been used widely in
temperate (e.g., Frolking et al., 2010; Tang et al., 2010) and boreal
(e.g., Deng et al., 2014; Kettunen, 2003; Rinne et al., 2018) peatlands, but
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has not been applied extensively in tropical peatlands. Modeling of peat
GHG fluxes in tropical settings has been constrained by scarcity of data
for parameterization of soil processes and validation of modeled results.
Only a small number of studies using process-based modeling in tropical
peatlands have been published, and these predominantly related to long-
term peat accumulation of carbon (e.g., Kurnianto et al., 2015; Warren
et al., 2017) and net ecosystem productivity (e.g., Mezbahuddin et al.,
2014) with limited application to peat GHG fluxes (Sa'adi et al., 2022).
There is a need to test the capacity of models to simulate peat GHG emis-
sions in tropical settings, where climate variations and peat-forming vegeta-
tion differ substantially from temperate and boreal zones (Farmer et al.,
2011).

The DeNitrification and DeComposition (DNDC) model is a process-
based biogeochemical model simulating ecosystem C and N dynamics
that has been evaluated against field measurements of GHG fluxes from
soils worldwide (Gilhespy et al., 2014; Giltrap et al., 2010). The model
was originally designed for simulating N>O emission and soil organic car-
bon (SOC) change in upland cropping systems (Li et al., 1992; Li et al.,
1994a), and has been adapted and modified for use in other ecosystems
including forests, (Li et al., 2005), wetlands, (Zhang et al., 2002), northern
peatlands (Deng et al., 2014, 2017), and livestock farms (Li et al., 2012).
DNDC has been used to investigate agricultural GHG emissions in temper-
ate (Taft et al., 2019) and sub-tropical (Li et al., 1994b) peats, and is partic-
ularly useful for generating GHG emissions for key tropical peatland
land-use categories and management practices such as oil palm because
the model can simulate impacts of common agricultural management prac-
tices on GHG emissions while also incorporating wetland hydrology (Zhang
et al., 2002) and biogeochemical processes in organic soils (Li et al., 1992).
In this study, we tested DNDC in oil palm plantations on peat with the goals
of (1) assessing its potential to simulate dynamics of peat GHG flux and
biogeophysical variables (vegetation productivity, water table level, soil
water-filled pore space, and soil temperature), (2) deriving EF for peat
onsite CO, emissions and N,O emissions from peat decomposition and N
fertilization, and testing their stability over the plantation rotation period,
and (3) investigating relationships among these EF and easily measurable
drivers. We focused on CO, and N,O emissions, which together account
for almost 100% of the peat GHG budget in oil palm plantations (Swails
et al., 2021), and disregarded peat CH, emissions which are negligible in
this system (Drosler et al., 2014).

2. Methods
2.1. Field measurements

To calibrate model parameters and validate modeled peat GHG fluxes,
we used field measurements collected in a peatland on the southern coast
of Indonesian Borneo in Central Kalimantan. The climate of the region is
humid tropical, characterized by high annual rainfall (2719 mm, Iskandar
Airport, Pangkalan Bun, 2001-2020) with a brief dry season, and average
daily temperature remaining fairly constant during the year. August is, on
average, the driest month (105 mm of rain). Mean annual temperature is
26.6 °C with mean monthly temperature ranging from 26.3 °C in July to
27.2 °C in May (Iskandar Airport, Pangkalan Bun, 2001-2020).

The field site was located approximately 10 km from the city of
Pangkalan Bun (S 02° 49.410’, E 111° 48.785) (Fig. 1a). Permanent plots
were established at the site in 2012 in three smallholder oil palm planta-
tions (OP-2007, OP-2009, and OP-2011). Land use history and land man-
agement practices are described for each plantation in the Supplementary
Information (S1).

We designed our sampling approach to capture spatial and temporal
heterogeneity in environmental conditions and GHG fluxes from soils.
One month before beginning the study we deployed measurement equip-
ment at six subplot locations per plot (Fig. 1b). At each subplot we installed
equipment close to the base of a palm under the palm canopy (CT) and at
mid-distance between two palms (FT) to capture the influence of micro-
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Fig. 1. Field sampling design. Measurements were collected from a peatland on the island of Indonesian Borneo in Central Kalimantan (inset, a) in three plots in smallholder
oil palm plantations (OP-2007, OP-2009, OP-2011) (a). In each plot, GHG chamber collars (circles) and surface wells (squares) were installed at six subplot locations (b). At
each subplot, one pair of collars and a surface well was installed at the base of a palm, and another set of collars and surface well was installed mid-distance between two
palms. Palms were spaced at a distance of approximately 8-9 m in a triangular design (after Swails et al., 2021).

spatial heterogeneity in vegetation processes and management activities on
peat GHG fluxes and biogeophysical drivers. The 2 m-radius area around
palms (CT) is where smallholders applied fertilizers and where roots are
usually most active (Nelson et al., 2006, 2015). Soil temperatures are typi-
cally higher far from palms due to the impact of canopy shading close to
palms, particularly in young plantations where the canopy is not closed
(Oktarita et al., 2017; Swails et al., 2019).

We measured soil N,O fluxes monthly from September 2012 until June
2015, and once more in September 2015 when El Nifio strongly reduced
precipitation, with concurrent measurements of total soil respiration com-
mencing in December 2012. Fluxes were not intensively monitored during
post-fertilization periods, thus measured N»5O fluxes stem from peat decom-
position and exclude short-term fertilizer-induced emissions.

Soil temperature and moisture (water-filled pore space) (WFPS) at the
topsoil layer (0-5 cm) and water table level were monitored concurrently
with gas fluxes at CT and FT positions from September 2012 to June
2015 and once more in September 2015. Further details on methods for
measurement of soil GHG fluxes and environmental variables are provided
in the Supplementary Information (S2).

Spatio-temporal variations of soil GHG fluxes and environmental vari-
ables from January 2014 to June 2015 and in September 2015 are reported
by Swails et al. (2019, 2021). The Supplementary Information (S2) pro-
vides a more complete dataset covering the entire monitoring period from
September 2012 to September 2015.

2.2. Modeling

2.2.1. DNDC model overview

The DNDC model consists of two components. The first component in-
cludes the soil climate, vegetation growth and decomposition sub-models.
These sub-models predict daily soil temperature, moisture, pH, redox po-
tential, CO,, flux and substrate concentration profiles (e.g., NH. , NO3 , dis-
solved organic carbon [DOC]), based on ecological drivers (climate, soil,
vegetation and anthropogenic activity). Water table level dynamics are pre-
dicted by DNDC using several parameters to estimate lateral flows, includ-
ing surface inflow rate, maximum water table depths for surface and
ground outflows, and surface and ground outflow rates (Zhang et al.,
2002). The second component comprises the fermentation, nitrification,
and denitrification sub-models. These sub-models predict daily CH, and
N gas fluxes (NO, N5O, N5, and NH3) based on the soil environmental
variables predicted by the sub-models of the first component (Li, 2000).
Geochemical and biogeochemical reactions in the model have been

parameterized using laboratory and field studies in addition to classical
laws of physics, chemistry, and biology (Gilhespy et al., 2014).

To model decomposition, SOM is divided into litter, humads (sub-
stances partly stabilized by humification and adsorption [McGill et al.,
1981]), and humus pools representing compounds with different intrinsic
decomposition rates (Li et al., 1992). The litter pool is further divided
into very labile, labile, and resistant sub-pools. The actual modeled rate of
SOM decomposition depends on soil clay content (minimal in organic
soils) and thermal and moisture conditions as well as the size of each
SOM pool and sub-pool (Li et al., 2000).

Modeled nitrification rate is regulated by soil ammonium (NHZ ) con-
centration, temperature, moisture, clay content, pH, and aerobic fraction
of soils (Li, 2000). Denitrification is simulated as a sequential reduction pro-
cess (NO3 ', NO5 , NO, N5O, N,), with rate regulated by concentrations of
electron donor (i.e., DOC) and acceptors (i.e., N species) in the anaerobic
fraction of soils (Li, 2000). The relative proportions of NO, N,O and N,
gases emitted depends on soil moisture and available substrates for nitrifi-
cation and denitrification processes.

2.2.2. Model input data

Peat GHG fluxes and biogeophysical drivers were simulated for each of
the three plantations. We used a combination of site-level (weather, vegeta-
tion, and agricultural management practices), and plot-level or sub-plot
level (hydrology and soil) input values. Input parameter values were care-
fully selected and calibrated to simulate conditions in peat soils. Daily me-
teorological data, including maximum and minimum air temperatures and
precipitation, were obtained from the local meteorological station at
Iskandar Airport in Pangkalan Bun, 10 km from the study site. Phenological
and physiological parameters related to palm growth (biomass partitioning
and C:N ratio) were taken from the literature (Table S1). Management prac-
tices modeled in oil palm plots included planting, fertilizing, and harvest-
ing. Palms were planted in the first year of simulations and N- and
P-fertilized every three months following rates applied locally (S1) with ap-
plication rate decreasing from 150 to 84 kg N-P ha™ ! yr ! in years 1-3, to
135-76 N-P ha™ ' yr ™! in years 4-6, to 120-67 kg N-P ha™~' yr ! in years
7-30. Oil palm fruit harvest was set to occur once per month starting in year
three, as typically practiced. While in situ, fronds are cut at fruit harvest,
and piled in stacks between palms, aboveground litterfall occurred evenly
over space and time in model simulations. Additional model inputs are de-
scribed in the Supplementary Information (S3).

To account for microspatial variation in peat CO, and N5O fluxes and
drivers, DNDC was run separately for close to palm (CT) and far from
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palm (FT) positions. To model soil respiration and biomass growth, CT sim-
ulations were performed with vegetation (oil palm) and fertilization while
FT simulations were performed with no vegetation (bare peat) and no
fertilization. To model N,O emissions from peat decomposition, CT
simulations were performed with vegetation but no fertilization, and FT
simulations were performed as above. Information on the individual spin-
up periods can be found in the Supplementary Information (S3).

2.2.3. Model calibration

Parameters for simulating vegetation growth and senescence were ad-
justed by comparing simulated aboveground and belowground biomass ac-
cumulation, aboveground litterfall, and root mortality to literature values.
Environmental variables (water table level, soil WFPS, and soil temperature)
collected from the plantations during Sep 2012 — Sep 2015 were used to cal-
ibrate additional soil (Table S2) and hydrological parameters (Table S4).
Peat C:N ratio and GHG flux measurements (total soil respiration and peat de-
composition N,O) measured in situ during Sep 2012 — Aug 2013 were uti-
lized to calibrate SOM partitioning among the model's litter, humads, and
humus pools (Table S3). S3 provides additional details on model calibration.

2.2.4. Model validation

Simulated mean annual total soil respiration, heterotrophic respiration,
and N,O fluxes from peat decomposition were validated against mean
annual fluxes determined from field measurements collected during Sep
2013 - Sep 2015. Spatial ratios were used to scale-up modeled and mea-
sured fluxes for CT and FT simulations to the plot level. We used the ratio
of area within a 2 m radius of palms (CT) to the area outside of this radius
(FT). The CT to FT ratios in oil palm plantations were 25:75 (OP-2011),
27:73 (OP-2009), and 37:63 (OP-2007) (Swails et al., 2019). Annual in
situ heterotrophic respiration rate was estimated from total soil respiration
using the partitioning ratios of 61.0 + 2.3% for OP-2007 and 82.5 * 5.7%
for OP-2011, measured from Jun 2013 — Jun 2014 (over 13 months) in the
two plantations (Hergoualc'h et al., 2017). An average partitioning ratio of
71.8 = 10.8% was applied for OP-2009, considering the plantation age was
between those of OP-2007 and OP-2011.

We used statistical indicators of correlation and coincidence to evaluate
the overall agreement between simulated and measured values. A high cor-
relation between simulations and measurements indicates that the model
simulates the dynamics of the measured variable well, whereas a high coin-
cidence indicates that the magnitude of the simulated values closely corre-
sponds to the measured values (Smith et al., 1996). Pearson's correlation
coefficient (r) and relative root mean squared error (RMSE) between simu-
lated and in situ mean annual total soil respiration, heterotrophic respira-
tion, and N,O fluxes were used to assess correlation and coincidence,
respectively. To further investigate causes for deviations between simula-
tions and measurements, we partitioned the mean squared error (MSE =
RMSE?) into the sum of the squared bias (SB = squared mean deviation),
the squared difference between standard deviations (SDSD), and the lack
of correlation weighted by the standard deviations (LCS) (Koboyashi and
Salam, 2000). SB represents bias of the simulation. SDSD represents the dif-
ference in the magnitude of fluctuation between the simulation and mea-
surement, while LCS represents the correlation between simulated and
measured values. A larger SDSD indicates that the model failed to simulate
the magnitude of the fluctuation, while a larger LCS means that the model
failed to simulate the pattern of the fluctuation.

2.2.5. Model application

To derive EF for peat onsite CO, emissions and N,O emissions from peat
decomposition and N fertilization, test the stability of these EF over the plan-
tation rotation period, and investigate relationships among EF and easily
measurable drivers, we ran simulations for each plantation over a 30-year
period typical of oil palm rotation cycles. Model input was as for model cal-
ibration and validation, with the following changes. We input daily weather
from the meteorological station at Iskandar Airport for the years 2007-2020
and assigned daily weather from a year randomly selected between 2007
and 2020 for each year thereafter (2021-2040). Fertilizer was applied
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four times a year using common N application rates practiced in
Southeast Asia, with plantations receiving 75 kg N ha™~' yr~! until the
palms had reached maturity at three years (Mutert et al., 1999) and
125 kg N ha™! yr ™! thereafter (Darmosarkoro et al., 2003). To model
peat CO, emissions, CT simulations were performed with vegetation (oil
palm) and fertilization while FT simulations were performed with no vege-
tation (bare peat) and no fertilization. Following the IPCC guidelines
(Drosler et al., 2014), the peat onsite CO, EF (EF ,,0de1ed co2 onsite) Was calcu-
lated as the difference in C outputs from heterotrophic respiration and C
inputs from litterfall and root mortality. To model N,O EF for peat decompo-
sition (EFmodeled N20 decomp)> CT simulations were performed with vegetation
but no fertilization. The EF for fertilizer-induced N,O emissions (EF,oqeled
n20 fert) Was computed as the difference in N,O emissions in simulations
with and without N fertilization divided by the annual N application rate.

The mean and standard error of annual peat onsite CO, and N,O EF was
calculated over the 30-year rotation period (n = 3 plantations per year),
and per decade (0-10, 10-20, 20-30 years). Error in decadal means was
calculated by propagating annual EF errors (n = 10 years). Mean annual
and decadal EF were compared to the IPCC defaults for oil palm plantation
on organic soil (Drosler et al., 2014) and to in situ values from our sites. The
modeled N,O EF for N fertilization was compared to the IPCC EF for syn-
thetic fertilizer inputs in wet climates (Hergoualch et al., 2019).

We investigated relationships between modeled annual EF (EF,0deled
CO2 onsites EFmodeled N20 decomp and EFrnodeled N20 fert) and annual PreCiPita'
tion, water table level, and soil WFPS, C:N ratio and mineral N content
(NOs and NHZ) using univariate regression and stepwise multiple linear
regression with Akaike Information Criterion (AIC) for model selection.
For both univariate and multiple regressions we took the average of the
three plots in each year of the simulation (n = 30). In all cases, CT and
FT simulations were scaled-up to the plot level. All statistical analyses
were computed using R version 4.0.4. A threshold p value of 0.05 was
used for significance.

3. Results
3.1. Model calibration

3.1.1. Vegetation

Aboveground (AGB) and belowground (BGB) oil palm biomass, above-
ground litterfall, and root mortality modeled by DNDC and averaged across
the three plantations are presented in Fig. 2 and compared to in situ mea-
sured results and to the literature. DNDC-modeled AGB increased over time
following a trend similar to the model by Khasanah et al. (2015) for
Indonesian industrial plantations on peat (Fig. 2a) and was in close agree-
ment with in situ observations. BGB reached a plateau after 10 years and
was greater than in situ BGB. For plantations older than 5 years modeled
BGB was greater than BGB estimated from AGB applying the equation of
Henson and Dolmat (2003) (Fig. 2b). However, the 30-year time-averaged
ratio of modeled BGB to modeled AGB (0.75) was similar to the root:shoot
ratio modeled by Henson and Dolmat (2003) (0.76). Aboveground litterfall
also plateaued after 10 years and was within the range of litterfall
rates reported in the literature and measured in situ (Fig. 2¢). The 30-
year-average aboveground litterfall rate modeled by DNDC was 2.6 =+
0.1 Mg Cha™! yr™!, slightly higher than the average rate computed
from the literature (2.1 = 0.2 Mg Cha™'yr~! n = 12) (Fig. 2c). Root
mortality rate steadied after 20 years and was below the linear model
of Henson and Dolmat (2003) for oil palm plantations on peat. DNDC
predicted an average root mortality rate over a 30-year rotation of
3.9 + 0.2 Mg Cha~! yr™?, slightly lower than the mean calculated
from the literature (5.0 + 1.0 Mg Cha~'yr~ ', n = 5) (Fig. 2d).

3.1.2. Hydrology and soil

Modeled and in situ water table level, soil WFPS, and soil temperature
are shown in Fig. 3. The model simulated water table level and its
fluctuation well overall. Lower water table levels were predicted during
dry months, when total monthly precipitation was <100 mm (Sep 2012,
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Fig. 2. Oil palm aboveground biomass (AGB) (a), belowground biomass (BGB) (b), aboveground litterfall (¢), and root mortality (d) modeled in this study (black line, average
of the three plantations) and reported in the literature (symbols and colored lines). In situ measured results are presented for the three plantations (OP-2011, triangle;
OP-20009, circle; OP-2007, square) in (a), (b) (Novita et al., 2021), and (c) (Swails et al., 2021). Panel (a) presents AGB modeled by Germer and Sauerborn (2008) (for
plantations on peat and mineral soils), by Khasanah et al. (2015) (for industrial plantations on mineral soil, M — I; for smallholder plantations on mineral soil, M - S; and
for industrial plantations on peat soil, P — I), and by Syahrinudin (2005) (for plantations on mineral soils). Panel (b) displays BGB modeled by Henson and Dolmat (2003)
(pink line). Panel (c) presents aboveground litterfall measured by Lamade et al. (1996) (asterisk), Lamade and Setiyo (2002) (cross), Dresscher et al. (2016) (diamond),
and Wakhid and Hirano (2021) (x). Panel (d) presents root mortality modeled by Henson and Dolmat (2003) (pink line) and measured by Lamade et al. (1996) (asterisk),
Henson and Chai (1997) (hashtag), Lamade and Setiyo (2002) (cross), and Kotowska et al. (2016) (diamond).

Jul - Oct 2014, Jun - Sep 2015) (Fig. S1a), but the model did not accurately
simulate water table levels of more than 1.5 m below the soil surface. DNDC
captured the decrease in soil moisture during the dry season in 2014 and
2015 but not in 2013, when total monthly precipitation did not fall below
100 mm (Fig. S1a). Modeled soil WFPS was highly variable temporally,
and generally higher far from palms than close to palms in all plots, in
agreement with in situ observations (Fig. S2b). The model accurately pre-
dicted the magnitude (but not temporal variation) of observed soil temper-
ature in OP-2009 and OP-2011. The modeled soil temperature CT and FT
was generally higher than the observed soil temperature in OP-2007, indi-
cating that the model did not simulate the influence of vegetation shading
in the oldest oil palm plantation.

Modeled and in situ total soil respiration and N,O emissions from
peat decomposition during Sep 2012 — Aug 2013 (model calibration
year) are displayed in Fig. 4. DNDC simulated the magnitude of total

soil respiration satisfactorily overall for both spatial positions, with
total soil respiration higher close to palm than far from palm. The
model presented limitations in simulating the monthly variation in
mean total soil respiration, but the variation in total soil respiration
was high within plots, and the simulated values were generally within
one standard deviation of field observations. The mean modeled contri-
butions of heterotrophic respiration to total soil respiration at the plot
scale were 76.3% and 88.4% for OP-2007 and OP-2011, respectively,
compared to 61.0 = 2.3% and 82.5 + 5.7% determined in situ by
Hergoualc'h et al. (2017) in the same plantations.

The predicted N,O fluxes were generally of the same magnitude as the
observed N,O fluxes in all plots, and N,O fluxes were higher far from palm
than close to palm, in agreement with field observations (Fig. S2e). Occa-
sional N,O uptakes observed in situ (Fig. 4), were not simulated by DNDC
which does not have an algorithm to model this process. The model also
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The RMSE (root mean squared error) is the square root of MSE.

did not simulate the observed pulse of N,O that occurred at the FT position
in OP-2011 (Fig. 4).

3.2. Model validation

The high Pearson correlation coefficients between modeled and ob-
served mean annual total soil respiration, heterotrophic respiration and
peat decomposition N,O emission rates indicate that the dynamics of the
annual fluxes were well simulated by DNDC over the limited number of ob-
servations from our sites (Fig. 5a, b, c¢). The root mean squared errors
(RMSE) of mean annual total soil respiration (2.4 Mg CO,-C ha™ ! yr™1)
and heterotrophic respiration (1.1 Mg CO,-C ha™! yr~!) were low and
amounted to, respectively 15% and 10% of mean annual observed rates
(16.3 and 11.6 Mg CO,-C ha~ ' yr ™, respectively). On the other hand,
the RMSE of mean annual peat decomposition N,O emissions (2.1 kg N
ha™! yr~1) was 73% of the observed flux (2.9 kg N ha™! yr~1). For all
three fluxes, the large contribution of SDSD to MSE indicates that the
model did not simulate the full magnitude of fluctuation among observa-
tions (Figure5a-c insets). Monthly variation in modeled and in situ peat
GHG fluxes are presented in the Supplementary Information (S4).

3.3. Model application

3.3.1. Peat onsite CO2 and N»O emission factors

Mean annual and decadal modeled peat onsite CO, emissions
(EFmodeled co2 onsite) are compared with the IPCC default for oil palm planta-
tions on organic soil (EFpcc co2 onsite = 11 Mg CO, ha™! yr™?, Drosler
et al., 2014) and in situ observations in Fig. 6a. EFodeled co2 onsite decreased
over time due to a decline of heterotrophic respiration more important than
the simultaneous increase in C inputs from litterfall and root mortality over
the first decade (Fig. 6b). Decreasing heterotrophic respiration was related
to reduction in the modeled SOM litter pool fraction (Fig. S4). In the first de-
cade modeled EF (EFodeled coz onsite 0-10 years = 7.7 * 0.4 Mg Cha™ 1 yr- D)
overlapped the 95% confidence interval of the IPCC default, but fell below
this range in the second (EFnodeled co2 onsite 10-20 year = 3.0 * 0.2 Mg C
ha™! yr- 1) and third decade (EFmodeled cO2 onsite 10-30 year 1.8 = 0.3 Mg C
ha™!yr~ 1) (Fig. 6a).

Mean annual and decadal modeled N,O emissions stemming from peat
decomposition (EFpmodeted N20 decomp) are compared with the IPCC default,
and in situ values, in Fig. 7a. Modeled annual N,O emissions from peat de-
composition were highly variable over time with a large standard error
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and root mortality are not displayed given their low values (<5% of mean in year 1

reflecting the variation across the three plantations. The EF over the first de-
cade (EFmodeled N20 decomp 0-10 years = 3.5 = 0.3kgN,Oha ™' yr ") increased
over the fOHOWing decades (EFmodeled N20 decomp 10-20 years — 47 = 0.5 kg
N0 h371 Yfl and EFmodeled N20 decomp 20-30 years — 4.6 = 0.5 kg N>O
ha~! yr™1). In all cases, the modeled EF was higher than the IPCC default
(EFipcc n20 decomp = 1.2 kg NoO ha™ ! yr ™, Drésler et al., 2014).

Mean annual modeled N,O emissions induced by N fertilizer application
(EFhodeled N20 fert) Were substantially lower than rates obtained applying the
IPCC EF (1.6% of N inputs) (Fig. 7b) and also substantially lower than
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and <1% of mean in following years).

emissions from peat decomposition (Fig. 7a). EFodeled N20 fert WaS ON average
0.6% of N inputs over the 30-year rotation. Similar to N,O emissions from peat
decomposition, fertilizer-induced N,O emissions were lower in the first decade
(EFmodeled N20 fert 0-10 years = 0.32 % 0.11% of N inputs) than in the second de-
cade and third decades of the rotation (EFodeled N20 fert 10-20 years = 0.73 *
0.24% and EFyodeled N20 fert 20-30 years 0.-84 £ 0.27%). Both nitrification
and denitrification in the topsoil (0-10 cm) layer contributed to
fertilizer-induced N,O emissions, while N,O emissions from peat decom-
position were exclusively generated through nitrification (Fig. S5).
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Fig. 7. Peat N,O emissions stemming from peat decomposition (EFn20 gecomp) (@) and fertilizer-induced N,O emissions (b). Note different y-axis scales in (a) and (b). Modeled
emissions over the 30-year rotation period are represented by a solid grey line in (a) and (b) with dashed grey lines indicating standard error (n = 3). Panels (a) and
(b) present average annual modeled emissions during the first (green line), second (light blue line) and third (red line) decade with dashed lines indicating standard
errors (n = 10). In situ measurement of mean annual peat decomposition N,O emissions in our plots (Sep 2012 — Aug 2013, Sep 2013 — Aug 2014, Sep 2014 — Sep 2015)
are represented by triangles (OP-2011), circles (OP-2009), and squares (OP-2007) in (a). The black line in (a) presents the IPCC default EF for emissions from peat
decomposition in oil palm plantations (1.2 kg N ha~ ' yr~ !, no error as the estimate was based on a single value). In (b) the black line indicates N fertilizer-induced
emissions computed from the IPCC default EF (1.6% of N inputs) with dashed lines indicating the upper and lower bounds of the 95% CI. Plantations were simulated to

receive 75 kg N ha™!

yr~! for the first three years and 125 kg N ha™* yr~! thereafter following common practice in Southeast Asia (Darmosarkoro et al., 2003).
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Additional model outputs related to peat N,O emissions — rates of N min-
eralization, nitrification and denitrification as well as soil NH; and NO3
content (Fig. S5), N uptake by oil palm (Fig. S6), and peat NH; fluxes and
rates of NO3 leaching (Fig. S7) — are presented in the Supplementary
Information (S6).

3.3.2. Relationships between peat EF and environmental factors

Modeled annual peat onsite CO, emissions (EFodeled cO2 onsite)
increased logarithmically with increasing soil C:N ratio (Fig. 8a) and
decreased linearly with increasing soil NH; content in the topsoil layer
(0-10 cm) (Fig. 8b). EF 0deled co2 onsite Was not related to annual precipita-
tion, water table level, soil WFPS, or soil NO3 content.

Modeled annual N,O emissions stemming from peat decomposition
(EFmodeled N20 decomp) increased linearly with increasing total annual precip-
itation and rising water table level (Fig. 9a, b respectively), and increased
exponentially with growing topsoil (0-10 cm) NH content (Fig. 9¢). Mul-
tiple linear regression with precipitation and topsoil NH; content ex-
plained 86% of variation in peat decomposition N,O emissions (p <
0.0001). EFmodeled N20 decomp Was not related to soil WFPS or NO5 content.

EF n0deled N20 fert decreased exponentially with increasing soil C:N ratio
(Fig. 10a) and increased exponentially with increasing soil mineral N
content (NO3 + NHJ) in the topsoil layer (Fig. 10b). Fertilizer-
induced N,O emissions were also related to total annual precipitation
and water table level, but the models poorly explained variation in
EFmodeled N20O fert (R2 < 025)

4. Discussion
4.1. Model application and limitations

To account for the variability of vegetation and management in oil palm
plantations and associated soil and plant processes, we ran the DNDC model
for two spatial positions (close to palm and far from palm) where soil GHG
fluxes and environmental variables were collected in situ. This approach
has been previously applied for representation of micro-spatial variation
in plot-scale simulations of agro-ecosystems using DNDC (e.g., Deng et al.,
2018) and other process-based models (e.g., Hergoualch et al., 2009).
While it allows simulating fertilizer application around palms and disaggre-
gating N,O emissions per N source (SOM versus N input), the approach also
presents several limitations. For instance, the two spatial positions are inde-
pendent from each other in the simulations thereby their interactions, like
C and N lateral transfers, are not considered in our analysis. Furthermore,

all C inputs were simulated to occur in the CT area (since the FT position
was bare soil) and aboveground litterfall was simulated to be even over
time while in practice, fronds are cut monthly during fruit harvest and
piled in stacks between palms. However, the impact on peat onsite CO5
and N,O emissions of simulating an even distribution of aboveground
litterfall C inputs in space and time may be minimal according to findings
by Manning et al. (2019). While the spatial distribution of belowground
carbon inputs from root mortality have not been well characterized in oil
palm plantations, root density is usually highest in the 2-m radius around
palms. However, roots can extend up to 5 m from the palm base (Khalid
et al., 1999), where the FT position was located. According to Nelson
etal. (2006) and Goodrick et al. (2016) roots are potentially less active fur-
ther from palms in taking up nutrients and contributing to OM incorpora-
tion to the soil. Nevertheless, to test bias associated with our approach
field measurements are needed to better characterize the spatially hetero-
geneous influence of root processes such as OM input from mortality on het-
erotrophic respiration and peat decomposition N,O emissions.

With regards to model performance, DNDC simulated well the magni-
tude and fluctuations of key controls of soil GHG fluxes like the water
table level and soil WFPS (Fig. 3). However, the model overestimated soil
temperature in the oldest plantation (Fig. 3), where the effect of canopy
shading at the CT position was not adequately captured. This bias seemed
to have a minimal impact on the results of this study given that soil temper-
ature was not a key variable explaining variation in the simulated emission
factors (Figs. 8-10). Observations of the influence of soil temperature on
heterotrophic respiration and N,O emissions stemming from peat decom-
position in oil palm plantations are inconsistent, with some studies detect-
ing a positive relationship between soil temperature and peat GHG fluxes
(Chaddy et al., 2019; Manning et al., 2019; Oktarita et al., 2017) and
other studies detecting no influence (Comeau et al., 2013; Marwanto and
Agus, 2014) similarly as at our research sites (Swails et al., 2018; Swails
et al., 2021). Different trends among research studies may be due to a dis-
parity in the amplitude of temperature variation during the experimental
period, a difference in the level of shade depending on the age of palms
as well as a dissimilarity in temperature sensitivity related to SOM quality
(Davidson and Janssens, 2006). Even so, the magnitude of in situ GHG
emission variation associated with temperature changes may remain lim-
ited in the humid tropics where diurnal, seasonal, and inter-annual fluctu-
ations are small (Comeau et al., 2016; Kiew et al., 2020; Oktarita et al.,
2017).

Average modeled C inputs to the peat from aboveground litterfall and
root mortality over the 30-year rotation were within the ranges of rates
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reported in the literature (Fig. 2¢, d). However, published measurements of
root mortality in oil palm plantations are highly variable and differ widely
depending on local conditions (Henson and Chai, 1997; Lamade and
Bouillet, 2005). Modeled C outputs from heterotrophic respiration were
close to in situ observations (Fig. 5b) and were sensitive to the initial size
of the litter pool fraction of SOM (Table S3). The main shortcoming of
DNDC was its inability to simulate the full magnitude of fluctuation
among observations in mean annual N,O emissions from peat decomposi-
tion (Fig. 5¢). The model captured the higher emissions in OP-2011 than
in the other plantations (Fig. 5¢) owing to the sensitivity of simulated
peat decomposition N,O emissions to the initial size of the SOM humad
pool and corresponding initial humad fractions at the sites (Table S3). How-
ever, DNDC overestimated annual emissions in OP-2007 and OP-2009, and
underestimated emissions in OP-2011, potentially as a result of a failure to
simulate, respectively, N,O uptake in the oldest and intermediate-age plan-
tations and pulses of N,O in the youngest plantation. Indeed, in OP-2007
and OP-2009, in situ N,O uptake by peat represented close to 10% of the
mean net annual N,O flux (Swails et al., 2021). N,O consumption is not
uncommon across the tropics (Chapuis-Lardy et al., 2007) and has been ob-
served in Southeast Asian and South American peatlands (e.g. Hergoualch
et al., 2020; Jauhiainen et al., 2011; Takakai et al., 2006). It is usually pro-
moted by low nitrate availability, high WFPS and more generally by

10

conditions inhibiting N,O diffusion in the soil (Chapuis-Lardy et al.,
2007) as observed at the sites (Fig. 3, Table S2). In order to simulate N,O
uptake by peat, the model needs to incorporate relevant processes consum-
ing N»O in soils and simulate impacts of environmental factors on these pro-
cesses. In OP-2011, in situ pulses of N,O flux which occurred far from palms
in half of the chambers had a large influence on annual N,O emissions
(Swails et al., 2021). While site-specific drivers of these pulses are unclear,
hot spots of N,O emissions from peat in oil palm plantations have previ-
ously been linked to high rates of net mineralization measured in vitro sug-
gesting that microbial or fungal community composition could play a role
(Oktarita et al., 2017). The combination of biogeophysical drivers stimulat-
ing transient, sporadic, or longer-term conditions driving extremely large
pulses of N,O emissions from peat decomposition requires further investi-
gation in order to appropriately simulate hot spots of N,O flux using
process-based models.

4.2. Peat onsite CO, EF

The onsite CO, EF is critical to GHG inventories in oil palm plantations,
given that in drained peatlands over 90% of peat GHG emissions are re-
leased as CO, (Swails et al., 2021). DNDC offered the possibility to simulate
all C fluxes that contribute to the peat onsite CO, EF (heterotrophic
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respiration, litterfall, root mortality) and to investigate temporal change of
these fluxes and their balance. Simulation of the full 30-year oil palm rota-
tion indicated that the EF,odeled co2 onsite declined over time as the result of
a larger decrease in heterotrophic respiration rate than the corresponding
increase in C inputs (Fig. 6b). The model predicted that the initial large de-
composition rates were not sustained, and this decrease was highly posi-
tively correlated to reduced fraction of the litter pool, the most labile pool
contributing to SOM (Fig. S4b). This result is in agreement with observa-
tions from ex situ experiments indicating that land-use change renders trop-
ical peat more recalcitrant to decomposition (Jauhiainen et al., 2016;
Kononen et al., 2016), implying that soil heterotrophic respiration from a
drained tropical peatland will decline over time (Swails et al., 2018). Mech-
anistically, the reduction in C decomposition rate can be explained by pref-
erential consumption by microbes of labile C compounds, leading to
increased ratio of recalcitrant to labile C compounds in degraded peat
soils (Kononen et al., 2016; Swails et al., 2018; Wright et al., 2011).
While chrono-sequential in situ experiments on soil heterotrophic respira-
tion remain limited to young oil palm plantations (Hergoualch et al.,
2017), Cooper et al. (2020) observed a 50% decrease in a mature plantation
as compared to a young plantation in soil respiration measured 3.5 m away
from palm trunks and assumed as representative of heterotrophic respira-
tion by these authors. Similarly, a long-term whole ecosystem monitoring
study by McCalmont et al. (2021) found a 51% reduction in peat carbon
losses in the first 6 years as compared to the following 7 years of an oil
palm plantation chronosequence. The decrease of the modeled EFcoy onsite
over time suggests that the EFjpcc o2 onsite (11 Mg C ha™ ! yr~ ') which
was developed based on young plantations could be refined by reducing
its value by 61% and 77%, respectively, for the second decade (4.3 Mg C
ha~! yr™!) and third decade (2.5 Mg C ha™! yr~!) after planting, or by
69% on average for the last two decades (3.4 Mg C ha™! yr ™). Together
with data on plantation age, either site-specific or derived from remote
sensing approaches (e.g. Hansen et al., 2013), these refined EF could im-
prove the accuracy of GHG accounting in these ecosystems.

The temporal decrease of the EF,,ogeled co2 onsite Was associated with a
decline in soil C:N ratio (Fig. 8a). Microbial transformation of organic mat-
ter depletes C more quickly than N, leading to declining soil C:N ratio with
increasing peatland degradation (Leifeld et al., 2019). Moreover, the in-
creased litter and root N inputs to the soil over time potentially contributed
as well to a gradual decrease in the soil C:N ratio. The negative relationship
between the EFppodeied coz onsite and s0il NHZ content (Fig. 8b) corroborates
the tight link between peat decomposition and N mineralization processes
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both of which are affected by the quality of the organic matter, in particular
the soil C:N ratio (Bayley et al., 2005). Many studies have observed that
drainage of peatlands results in increased rates of N mineralization and ni-
trification and decreased rates of denitrification, leading to higher levels of
soil mineral N (Groffman et al., 1984; Holden et al., 2004). In our simula-
tion soil mineral N content — chiefly dominated by NH; — increased over
time (Fig. S5a) as a result of net N mineralization rates that were higher
than rates of nitrification (Fig. S5d). While these relationships should be
further investigated across peatlands portraying a range of SOM quality
and validated based on in situ data from plantations spanning the 30-year
rotation, they are promising for predicting peat onsite CO, losses in oil
palm plantations on peat.

Although water table level has been thoroughly investigated as a proxy
for heterotrophic respiration from tropical peat soils (e.g. Carlson et al.,
2015; Prananto et al., 2020), peat onsite CO, emissions are equal to the dif-
ference between C inputs from vegetation litter and C outputs from hetero-
trophic respiration. . Furthermore, peat CO, loss rates in tropical peatlands
vary greatly depending on pre-conversion land-use history and post-
conversion plantation age and management practices (Hergoualc'h and
Verchot, 2014; Hergoualc'h et al., 2017). Neither the modeled peat onsite
CO,, EF nor its individual components (heterotrophic respiration, litterfall,
root mortality) were related to mean annual water table. The significant re-
lationships among modeled peat onsite CO, EF, C:N ratio and peat NH./
content suggests that peat chemistry exerted a stronger control on peat
onsite CO, emissions than mean annual water table level over the 30-year
rotation in the simulated oil palm plantations.

The EF0deled co2 onsite it the first decade after plantation establishment
generated by DNDC (7.7 + 0.4 Mg C ha™! yr~!) was lower but within the
95% confidence interval of the IPCC default (11 + 5.5 Mg Cha™*yr™ ).
The latter is based on flux measurements in relatively young plantations
(median age of plantations = 7 years) and considers peat subsidence stud-
ies which may inflate estimates (Cooper et al., 2020; Kasimir-Klemedtsson
et al., 1997), especially in years following peat swamp forest conversion
when the peat dome collapses and subsidence originates mainly from com-
paction and shrinking physical processes rather than chemical decomposi-
tion processes (Kool et al., 2006).

4.3. Peat decomposition N,O EF

DNDC predicted increasing N,O emissions from peat decomposition
over the 30-year rotation with a notable difference between the first decade
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and the latter decades (+1.2 kg N ha~* y~!); a trend which followed the
pattern of increased soil NH; content over time (Fig. S5b). The increase
in EFnodeled N20 decomp SUggests that the IPCC EF (1.2 kg N ha™! yr’l)
could be increased by 34% in the latter two decades of a 30-year rotation
to account for increased N,O emissions with increasing availability of
NH . Nevertheless, it is important to note that the predicted rise in N,O
emissions over time does not offset the corresponding decrease in CO,
emissions (54 Mg COxeq, ha~! over 30 years for N,O versus 458 CO,,
ha~"! over 30 years for CO,), indicating that total GHG emissions decline
over the rotation.

Inter-annual variation in mean annual N,O emissions from peat decom-
position was robustly (R? = 0.65) related to annual precipitation. Positive
feedback between soil N,O emissions and precipitation was found to be rel-
evant globally across biomes according to a meta-analysis of manipulative
experiments (Yan et al., 2018). Since precipitation is easy to monitor it
could serve as a useful proxy for monitoring N,O emissions from oil palm
plantations on peat. Modeled peat N>O emissions also increased with increas-
ing average annual water table level, but with a lower robustness than the re-
lationship with precipitation (R> = 0.48). These relationships were not
independent from each other since the average annual WT was positively
and strongly correlated to annual precipitation (R*> = 0.79). Peat decompo-
sition N,O emissions were found to be essentially a product of nitrification
(Fig. S5b), therefore the positive relationship with soil NHS content stands
to reason. Together, precipitation and soil NH; content explained 86% of
variation in peat decomposition N,O emissions, confirming the importance
of dual moisture and substrate controls on N,O emissions from SOM decom-
position (Firestone and Davidson, 1989; Butterbach-Bahl et al., 2013).

The EFmodeled N20 decomp Was three to four times higher than the IPCC EF
(1.2kgNha™ 1 yr- 1). Assessments of annual N,O emissions from peat de-
composition in unfertilized oil palm plantations in the first decade of rotation
(2-9 years) (Chaddy et al., 2019; Oktarita et al., 2017; Sakata et al., 2015) in-
dicated even higher rates (22.8 + 5.7 kg N ha~' yr~%, n = 8) than our
modeled results. The IPCC EF is based on flux measurements at a single
site, while observations of annual N>O emissions from peat decomposition
vary greatly according to site and are known to be large in drained peatlands
(Leifeld and Menichetti, 2018; Pérn et al., 2018; Tan et al., 2019). Additional
field measurements of N,O fluxes, particularly in oil palm plantations in the
second and third decades of rotation, are crucially needed to reduce the un-
certainty of peat decomposition N,O fluxes.

4.4. Fertilizer-induced N,O EF

Disentanglement of N,O emissions stemming from peat decomposition
and N fertilizer-induced N,O emissions is difficult, and only feasible over
short-term experiments with the application of '°N-labeled fertilizer
(Mosier and Klemedtsson, 1994). Process-based models provide the opportu-
nity to simulate unfertilized and fertilized scenarios while controlling other
environmental variables, thereby supporting disaggregation of N,O emis-
sions by source. Fertilizer-induced N,O emissions in oil palm plantations
and in drained cultivated peatlands of the tropics in general have been poorly
characterized (Pardon et al., 2016). These emissions, like N,O emissions
from peat decomposition, were higher in the second and third decades of
the rotation (0.73 * 0.24% and 0.84 + 0.27% of N inputs) compared to
the first decade (0.32 + 0.27% of N inputs). Consistent with assessments in-
dicating that oil palm N uptake stabilizes after the first years of growth,
modeled N uptake by palms was steady in the second and third decades of
the rotation (Fig. S6). This suggests a potential for increased N availability as-
sociated with N-fertilizer application exceeding vegetation demand to exac-
erbate N-fertilizer emissions. Fertilizer-induced N,O emissions have been
shown to increase exponentially with increasingly large mineral N surplus
in agricultural soils (Shcherbak et al., 2014; van Groenigen et al., 2010).

The fertilized-induced emission factor increased with decreasing soil C:
N ratio (Fig. 10a) and increasing mineral N content (Fig. 10b). A negative
relationship between the emission factor and the soil C:N ratio among
other variables was observed as a general tendency of agricultural soils in
Canada (Rochette et al., 2018). The relationship is consistent with
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increased nitrification rates resulting from fertilizer application (Fig. S5f)
contributing to reduce the soil C:N ratio. While peat decomposition N,O
emissions increased as soil NH, contents rose, the fertilizer-induced emis-
sion factor was related to total soil mineral content. Urea application fa-
vored nitrification (Fig. S5f) thus providing increase in available soil NO3
content (Fig. S5¢). Enhanced concentrations of soil mineral N (NH, and
NO3 ) as a result of long-term fertilization is pursuant to findings by Lu
et al. (2011) based on empirical studies.

Modeled N-fertilizer emissions contributed only 16% to total N,O emis-
sions (from peat decomposition and N-fertilizer inputs) over the rotation, in
agreement with observations from cultivated peatlands in Indonesia fertil-
ized similarly to our site (Oktarita et al., 2017; Toma et al., 2011). The
fertilized-induced N,O emission factor (0.6% of N inputs over the 30-year
rotation) was less than half of the IPCC EF (EFpcc n20 fert) (1.6% of N in-
puts). It was also much lower than the country-specific emission factor for
the Netherlands for fertilizer application on peat (3% of N inputs; Velthof
and Rietra, 2018). In wet climates high soil C content and low soil pH typ-
ically favor a high EF (Hergoualc'h et al., 2021) but urea as the form of the
fertilizer (Hergoualc'h et al., 2019) and high temperatures, common in
opened tropical peatlands, promote high gaseous NH; losses (Ernst and
Massey, 1960; He et al., 1999). DNDC predicted high volatilization losses
(16% of N inputs) as well as significant N losses via leaching (2%). Together
these important pathways of N loss (Fig. S7) may partly explain low N,O
emissions from N-fertilizer at our sites.

5. Conclusions

DNDC's simulated peat GHG fluxes (CO, and N,O) and biogeophysical
drivers (climate, soil, vegetation, and management practices) in oil palm
plantations on peat allowed the generation of EF disaggregated by planta-
tion age and emission source (decomposition, fertilizer-induced), a practi-
cal and useful application for GHG inventories in tropical peatlands.
Model predictions suggested that IPCC default EF for oil palm, based on lim-
ited observations in predominantly young plantations, may overestimate
peat onsite CO, emissions and underestimate N>O emissions from peat de-
composition in the later decades of the rotation. They also resulted in peat
N,O emissions stemming from synthetic N fertilizer inputs lower than the
IPCC default EF. Our study highlights the importance of biogeochemical
controls on oil palm peat EF in addition to physical controls. Soil C:N
ratio and mineral N content, in addition to precipitation, and water table
level, were identified as suitable proxies for refining peat EF for oil palm
plantations. Our analysis also highlighted the need for additional field stud-
ies to increase understanding of and better represent soil processes in trop-
ical peatlands and their influence on peat GHG emissions, particularly the
magnitude and spatial distribution of C inputs to peat from aboveground
litterfall and root mortality, the biogeophysical conditions driving hot
spots and hot moments of peat N,O flux, and the influence of changes in
SOM quality over time on heterotrophic respiration and N,O emissions
from peat decomposition and N-fertilizer inputs. Additional empirical stud-
ies in older plantations are crucially needed to validate model predictions
and refine oil palm peat GHG EF.
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