CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Replication Data for: Comprehensive Nutrient Analysis in Agricultural Organic Amendments Through Non-Destructive Assays Using Machine Learning

Portable X-ray fluorescence (pXRF) and Diffuse Reflectance Fourier Transformed Mid-Infrared (DRIFT-MIR) spectroscopy are rapid and cost-effective analytical tools for material characterization. We developed machine learning methods to rapidly quantify the concentrations of macro- and micronutrient elements present in the samples and propose a novel system for the quality assessment of organic amendments. Two types of machine learning methods, forest regression and extreme gradient boosting, were used with data from both pXRF and DRIFT-MIR spectroscopy. Cross-validation trials were run to evaluate generalizability of models produced on each instrument. Both methods demonstrated similar broad capabilities in estimating nutrients using machine learning, with pXRF being suitable for nutrients and contaminants. The results make portable spectrometry in combination with machine learning a scalable solution to provide comprehensive nutrient analysis for organic amendments.

Dataset's Files

Averaged MIR spectra of the manure standards run on the HTS-XT instrument.tab
MD5: af113c123eafb0e178d1fff26ead388f
Averaged MIR spectra of the manure standards run on the HTS-XT instrument

Other datasets you might be interested in