Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

{{menu_nowledge_desc}}.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Earthworms regulate ability of biochar to mitigate CO2 and N2O emissions from a tropical soil

Export citation

Soils account for >80% and 20% of the total agricultural N2O and CO2 emissions respectively. Soil management activities that target improved soil health, such as enhancing earthworm activity, may also stimulate further emissions of CO2 and N2O. One recommended strategy for mitigating these soil emissions is biochar amendment. However greater clarity on the interaction between earthworm activity and biochar, and subsequent impact on CO2 and N2O are needed to evaluate the environmental impacts of management practice. We measured N2O and CO2 emissions from a kaolinitic Acrisol in the presence or absence of earthworms, with and without application of two different biochars in a microcosm study. The two biochars were derived from indigenous trees; Zanthoxylum gilletii and Croton megalocarpus, and were tested at three application rates of 5 Mg ha−1, 10 Mg ha−1 and 25 Mg ha−1. Emissions of CO2 and N2O increased by 26% and 72% respectively in the presence of earthworms. In microcosms with biochar and earthworms however, emissions depended on type of biochar and rate of application. With C. megalocarpus, CO2 emission increased with increasing rates of biochar application with 25 Mg ha−1 resulting in higher CO2 fluxes compared to no-biochar control (p = 0.002), while no change was observed with Z. gilletii at the same rate. Nitrous oxide emissions were suppressed at 25 Mg ha−1 for both C. megalocarpus (p = 0.009) and Z. gilletii (p = 0.011). Reduction in N2O flux was however not consistent across biochar types. No change in N2O was observed with 5 Mg ha−1 and 10 Mg ha−1of C. megalocarpus. Biochar from Z. gilletii at 5 Mg ha−1 however led to increase in N2O emissions (p 

DOI:
https://doi.org/10.1016/j.apsoil.2019.04.001
Altmetric score:
Dimensions Citation Count:

Related publications