Explore eventos futuros e passados ​​em todo o mundo e online, sejam hospedados pelo CIFOR-ICRAF ou com a participação de nossos pesquisadores.

Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

Jelajahi acara-acara mendatang dan yang telah lalu di lintas global dan daring, baik itu diselenggarakan oleh CIFOR-ICRAF atau dihadiri para peneliti kami.

{{menu_nowledge_desc}}.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Plot-Scale Agroforestry Modeling Explores Tree Pruning and Fertilizer Interactions for Maize Production in a Faidherbia Parkland

Export citation

Poor agricultural productivity has led to food shortages for smallholder farmers in Ethiopia. Agroforestry may improve food security by increasing soil fertility, crop production, and livelihoods. Agroforestry simulation models can be useful for predicting the effects of tree management on crop growth when designing modifications to these systems. The Agricultural Production Systems sIMulator (APSIM) agroforestry tree-proxy model was used to simulate the response of maize yield to N fertilizer applications and tree pruning practices in the parkland agroforestry system in the Central Rift Valley, Ethiopia. The model was parameterized and tested using data collected from an experiment conducted under trees and in crop-only plots during the 2015 and 2016 growing seasons. The treatments contained three levels of tree pruning (100% pruned, 50% pruned, and unpruned) as the main plots, and N fertilizers were applied to maize at two rates (9 or 78 kg N ha−1) as sub-plots. Maize yield predictions across two years in response to tree pruning and N applications under tree canopies were satisfactorily simulated (NSE = 0.72, RSR = 0.51, R2 = 0.8). Virtual experiments for different rates of N, pruning levels, sowing dates, and cultivars suggest that maize yield could be improved by applying fertilizers (particularly on crop-only plots) and by at least 50% pruning of trees. Optimal maize yield can be obtained at a higher rate of fertilization under trees than away from them due to better water relations, and there is scope for improving the sowing date and cultivar. Across a 34-year range of recent climate, small increases in yields due to optimum N-fertilizing and pruning were probably limited by nutrient limitations other than N, but the highest yields were consistently in the 2–4 m zone under trees. These virtual experiments helped to form hypotheses regarding fertilizers, pruning, and the effects of trees on soil that warrant further field evaluation.

DOI:
https://doi.org/10.3390/f11111175
Altmetric score:
Dimensions Citation Count:

Related publications