{{menu_nowledge_desc}}.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Mixed planted-fallows using coppicing and non-coppicing tree species for degraded acrisols in Zambia

Export citation

The widespread planting of Sesbania sesban fallows for replenishing soil fertility in eastern Zambia has the potential of causing pest outbreaks in the future. The pure S. sesban fallows may not produce enough biomass needed for replenishing soil fertility in degraded soils. Therefore, an experiment was conducted at Kagoro in Katete district in the Eastern Province of Zambia from 1997 to 2002 to test whether multi-species fallows, combining non-coppicing with coppicing tree species, are better than mono-species fallows of either species for soil improvement and increasing subsequent maize yields. Mono-species fallows of S. sesban (non-coppicing), Gliricidia sepium, Leucaena leucocephala and Acacia angustissima (all three coppicing), and mixed fallows of G. sepium + S. sesban, L. leucocephala + S. sesban, A. angustissima + S. sesban and natural fallow were compared over a three-year period. Two maize (Zea mays) crops were grown subsequent to the fallows. The results established that S. sesban is poorly adapted and G. sepiumis superior to other species for degraded soils. At the end of three years, sole G. sepium fallow produced the greatest total biomass of 22.1 Mg ha1 and added 27 kg ha1 more N to soil than G. sepium + S. sesban mixture. During the first post-fallow year, the mixed fallow at 3.8 Mg ha1 produced 77% more coppice biomass than sole G. sepium, whereas in the second year both sole G. sepium and the mixture produced similar amounts of biomass (1.6 to 1.8 Mg ha1). The G. sepium + S. sesban mixture increased water infiltration rate more than sole G. sepium, but both these systems had similar effects in reducing soil resistance to penetration compared with continuous maize without fertilizer. Although sole G. sepium produced high biomass, it was G. sepium + S. sesban mixed fallow which resulted in 33% greater maize yield in the first post-fallow maize. However, both these G. sepium-based fallows had similar effects on the second post-fallow maize. Thus the results are not conclusive on the beneficial effects of G. sepium + S. sesban mixture over sole G. sepium

DOI:
https://doi.org/10.1023/B:AGFO.0000005225.12629.61
Altmetric score:
Dimensions Citation Count:

    Publication year

    2003

    Authors

    Chirwa, T.S.; Mafongoya, P.L.; Chintu, R.

    Language

    English

    Keywords

    biomass, infiltration, maize, nitrogen fertilizers, sesbania sesban, soil fertility

    Geographic

    Zambia

Related publications