Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

{{menu_nowledge_desc}}.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Contribution of L-band SAR to systematic global mangrove monitoring

Export citation

Information on the status of and changes in mangroves is required for national and international policy development, implementation and evaluation. To support these requirements, a component of the Japan Aerospace Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) initiative has been to design and develop capability for a Global Mangrove Watch (GMW) that routinely monitors and reports on local to global changes in the extent of mangroves, primarily on the basis of observations by Japanese L-band synthetic aperture radar (SAR). The GMW aims are as follows: (1) to map progression of change within or from existing (e.g. Landsat-derived) global baselines of the extent of mangroves by comparing advanced land-observing satellite 2 (ALOS-2) phased array L-band SAR 2 (PALSAR-2) data from 2014 with that acquired by the Japanese earth resources satellite (JERS-1) SAR (1992–1998) and ALOS PALSAR (2006–2011); (2) to quantify changes in the structure and associated losses and gains of carbon on the basis of canopy height and above-ground biomass (AGB) estimated from the shuttle radar topographic mission (SRTM; acquired 2000), the ice, cloud and land-elevation satellite (ICESAT) geoscience laser altimeter system (GLAS; 2003–2010) and L-band backscatter data; (3) to determine likely losses and gains of tree species diversity through reference to International Union for the Conservation of Nature (IUCN) global thematic layers on the distribution of mangrove species; and (4) to validate maps of changes in the extent of mangroves, primarily through comparison with dense time-series of Landsat sensor data and to use these same data to describe the causes and consequences of change. The paper outlines and justifies the techniques being implemented and the role that the GMW might play in supporting national and international policies that relate specifically to the long-term conservation of mangrove ecosystems and the services they provide to society.

DOI:
https://doi.org/10.1071/MF13177
Altmetric score:
Dimensions Citation Count:

Related publications