Explore eventos futuros e passados ​​em todo o mundo e online, sejam hospedados pelo CIFOR-ICRAF ou com a participação de nossos pesquisadores.

Découvrez les événements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

Jelajahi acara-acara mendatang dan telah lampau lintas global dan daring, baik itu diselenggarakan oleh CIFOR atau dihadiri para peneliti kami.

Explore eventos próximos y pasados de todo el mundo y en línea, sea que hayan sido organizados por CIFOR-ICRAF o que hayan contado con la asistencia de nuestros investigadores.


CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

Explore upcoming and past events across the globe and online, whether hosted by CIFOR-ICRAF or attended by our researchers.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Scrutinizing Urbanization in Kathmandu Using Google Earth Engine Together with Proximity-Based Scenario Modelling

Export citation

‘Urbanization’ refers to the expansion of built-up areas caused by several factors. This study focuses on the urbanization process in Kathmandu, the capital of Nepal. Supervised classification was conducted in Google Earth Engine by using Landsat data for years 2001, 2011 and 2021. The random forest classifier with 250 trees was used for classification to generate land-cover map. A land-cover map of 2021 was used as base map in the InVEST tool for scenario modelling. An accuracy assessment with 20% of sample points was conducted with different metrics, such as overall accuracy, kappa coefficient, producer accuracy, and consumer accuracy. The results show an increment of built-up areas by around 67 km2 over 20 years in a centrifugal pattern from the core district, converting agricultural and forest land. ‘Forest’ is still dominant land-use class, with an area of 177.97 km2. Agricultural land was highly converted to urban area. The overall accuracy of this classification process ranged 0.96–1.00 for different years. The scenario modelling further elaborated an amiability of drastic shift in land-use classes to ‘built-up’, especially forest and agriculture, by around 33 km2 and 66 km2, respectively. This study recommends the consideration of ecological approaches during the planning process.

Altmetric score:
Dimensions Citation Count:

    Publication year



    Aryal, A.; Bhatta, K.; Adhikari, S.; Baral, H.




    land use, urbanization, classification, satellite imagery, land cover, forests, agricultural land



Related publications