CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

O CIFOR-ICRAF publica mais de 750 publicações todos os anos sobre agrossilvicultura, florestas e mudanças climáticas, restauração de paisagens, direitos, política florestal e muito mais – em vários idiomas..

CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Remote sensing approach for spatial planning of land management interventions in West African Savannas

Exportar a citação

Forest management, agroforestry and tree planting are some of the key approaches to sustainable rural development, and climate change adaptation and mitigation in West African savannas. However, the planning of land management interventions is hindered by the lack of information at relevant spatial resolution. We examined predictive models for mapping various tree, soil and species diversity attributes with a comparison of RapidEye and Landsat imagery. The field data was collected in the vicinity of the community-managed forest in southern Burkina Faso, where the main environmental threats are agricultural expansion and fuelwood extraction. The modelling was done using Random Forest algorithm. According to our results, tree crown cover and correlated attributes, such as basal area and tree species richness, were predicted most accurately. High spatial resolution RapidEye imagery provided the best accuracy but difference to medium resolution Landsat imagery was negligible for most attributes. Burn scar masked Landsat time series performed similar to dry season single date Landsat imagery, but the former avoids image selection and mosaicking, and could be less sensitive to artifacts due to the burn scars. The presented approach provides valuable information on important tree, soil and species diversity attributes for spatial planning of land management interventions. © 2017 Elsevier Ltd

DOI:
https://doi.org/10.1016/j.jaridenv.2016.12.006
Dimensões Contagem de citações:

Publicações relacionadas