CIFOR-ICRAF s’attaque aux défis et aux opportunités locales tout en apportant des solutions aux problèmes mondiaux concernant les forêts, les paysages, les populations et la planète.

Nous fournissons des preuves et des solutions concrètes pour transformer l’utilisation des terres et la production alimentaire : conserver et restaurer les écosystèmes, répondre aux crises mondiales du climat, de la malnutrition, de la biodiversité et de la désertification. En bref, nous améliorons la vie des populations.

Explore eventos futuros e passados ​​em todo o mundo e online, sejam hospedados pelo CIFOR-ICRAF ou com a participação de nossos pesquisadores.

Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

Jelajahi acara-acara mendatang dan yang telah lalu di lintas global dan daring, baik itu diselenggarakan oleh CIFOR-ICRAF atau dihadiri para peneliti kami.

CIFOR-ICRAF publie chaque année plus de 750 publications sur l’agroforesterie, les forêts et le changement climatique, la restauration des paysages, les droits, la politique forestière et bien d’autres sujets encore, et ce dans plusieurs langues. .

CIFOR-ICRAF s’attaque aux défis et aux opportunités locales tout en apportant des solutions aux problèmes mondiaux concernant les forêts, les paysages, les populations et la planète.

Nous fournissons des preuves et des solutions concrètes pour transformer l’utilisation des terres et la production alimentaire : conserver et restaurer les écosystèmes, répondre aux crises mondiales du climat, de la malnutrition, de la biodiversité et de la désertification. En bref, nous améliorons la vie des populations.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties

Exporter la citation

We propose four methods for finding local subspaces in large spectral libraries. The proposed four methods include (a) cosine angle spectral matching; (b) hit quality index spectral matching; (c) self-organizing maps and (d) archetypal analysis methods. Then evaluate prediction accuracies for global and subspaces calibration models. These methods were tested on a mid-infrared spectral library containing 1907 soil samples collected from 19 different countries under the Africa Soil Information Service project. Calibration models for pH, Mehlich-3 Ca, Mehlich-3 Al, total carbon and clay soil properties were developed for the whole library and for the subspace. Root mean square error of prediction was used to evaluate predictive performance of subspace and global models. The root mean square error of prediction was computed using a one-third-holdout validation set. Effect of pretreating spectra with different methods was tested for 1st and 2nd derivative Savitzky-Golay algorithm, multiplicative scatter correction, standard normal variate and standard normal variate followed by detrending methods. In summary, the results show that global models outperformed the subspace models. We, therefore, conclude that global models are more accurate than the local models except in few cases. For instance, sand and clay root mean square error values from local models from archetypal analysis method were 50% poorer than the global models except for subspace models obtained using multiplicative scatter corrected spectra with which were 12% better. However, the subspace approach provides novel methods for discovering data pattern that may exist in large spectral libraries. © 2016 The Authors.

DOI:
https://doi.org/10.1016/j.chemolab.2016.02.013
Dimensions Nombre de citations:

Publications connexes